Relational Model & Algebra

CPS 116
Introduction to Database Systems

Announcements (Thurs. Aug. 31)

- Homework #1 will be assigned next Tuesday
- Office hours: see course Web page
 - Jun: TTH before class
 - Pradeep: MW afternoons
- Book
 - Read the email for details
 - Demo of Gradiance at the end of this lecture

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes
- Simplicity is a virtue!
Example

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

Schema versus instance

- **Schema (metadata)**
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- **Instance**
 - Content
 - Changes rapidly, but always conforms to the schema
 - Compare to type and objects of type in a programming language

Example

- **Schema**
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- **Instance**
 - { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ... }
Relational algebra
A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection
- Input: a table R
- Notation: $\sigma_p R$
 - p is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

Selection example
- Students with GPA higher than 3.0

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on selection

- Selection predicate in general can include any column of R, constants, comparisons (=, ≤, etc.), and Boolean connectives (∧: and, ∨: or, and ¬: not).
 - Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA} \geq 4.0 \land (\text{age} < 18 \lor \text{age} > 21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA} \geq \text{all GPA in Student table}} \text{Student} \]

Projection

- Input: a table R
- Notation: \(\pi_L R \)
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example

- ID’s and names of all students
 \[\pi_{\text{SID}, \text{name}} \text{Student} \]
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{Student} \]

\[
\begin{array}{|c|c|}
\hline
\text{SID} & \text{name} \\
\hline
142 & Bart \\
123 & Milhouse \\
456 & Ralph \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{age} \\
\hline
10 \\
2.3 \\
3.1 \\
2.3 \\
\hline
\end{array}
\]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)
A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows).

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S.

Derived operator: join

- Input: two tables R and S.
- Notation: $R \bowtie_p S$.
 - p is called a join condition/predicate.
- Purpose: relate rows from two tables according to some criteria.
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p.
- Shorthand for $\sigma_p(R \times S)$.

Join example

- Info about students, plus CID’s of their courses.

```
Student \bowtie_1 \text{Student.SID = Enroll.SID} \text{ Enroll}
```

Use `table_name.column_name.syntax` to disambiguate identically named columns from different input tables.
Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_L (R \bowtie S)$, where
 - π equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- $\text{Student} \bowtie \text{Enroll} = \pi, (\text{Student} \bowtie \text{Enroll})$

\[
\pi_{\text{SID, name, age, GPA, CID}} (\text{Student} \bowtie \text{Enroll})
\]

Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated
Difference
- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection
- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S

Renaming
- Input: a table R
- Notation: $\rho S R$, $\rho (A_1, A_2, \ldots) R$ or $\rho (A_1, A_2, \ldots) R$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to:
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
Renaming example

- SID's of students who take at least two courses

Summary of core operators

- Selection: $\sigma_p \ R$
- Projection: $\pi_x \ R$
- Cross product: $R \times S$
- Union: $R \cup S$
- Difference: $R - S$
- Renaming: $\rho_{A_1,A_2,\ldots} R$
 - Does not really add "processing" power

Summary of derived operators

- Join: $R \bowtie_i S$
- Natural join: $R \bowtie S$
- Intersection: $R \cap S$
- Many more
 - Semijoin, anti-semijoin, quotient, …
An exercise

- Names of students in Lisa’s classes
 - Their names
 - Students in Lisa’s classes
 - Lisa’s classes
- Who’s Lisa?

Another exercise

- CID’s of the courses that Lisa is NOT taking

A trickier exercise

- Who has the highest GPA?
Monotone operators

If some old output rows may need to be removed

- Then the operator is non-monotone
- Otherwise the operator is monotone

That is, old output rows always remain “correct” when more rows are added to the input

Formally, for a monotone operator \(\phi \):

\[R \subseteq R' \Rightarrow \phi(R) \subseteq \phi(R') \]

Classification of relational operators

- Selection: \(\sigma_p R \)
- Projection: \(\pi_L R \)
- Cross product: \(R \times S \)
- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Intersection: \(R \cap S \)

Why is “−” needed for highest GPA?

Composition of monotone operators produces a monotone query

- Old output rows remain “correct” when more rows are added to the input
Why do we need core operator X?

- Difference
- Cross product
- Union
- Selection? Projection?

Why is r.a. a good query language?

Relational calculus

- `{ s.ID | s ∈ Student ∧ ¬(∃ s' ∈ Student: s.GPA < s'.GPA) }`, or
- `{ s.ID | s ∈ Student ∧ (∀ s' ∈ Student: s.GPA ≥ s'.GPA) }

Relational algebra = “safe” relational calculus

- Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
- And vice versa

Example of an unsafe relational calculus query

- `{ s.name | ¬(s ∈ Student) }
- Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation `Parent(parent, child)`, who are Bart's ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!