Relational Model & Algebra

CPS 116
Introduction to Database Systems

Announcements (Thurs. Aug. 31)

- Homework #1 will be assigned next Tuesday
- Office hours: see course Web page
 - Jun: TTH afternoon before class
 - Pradeep: MW afternoon
- Book
 - Read the email for details
 - Demo of Gradiance at the end of this lecture

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes
- Simplicity is a virtue!

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>CID</td>
</tr>
<tr>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>CPS110</td>
</tr>
<tr>
<td>857</td>
<td>CPS114</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and objects of type in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- Instance
 - [{142, Bart, 10, 2.3}, {123, Milhouse, 10, 3.1}, ...]
Relational algebra
A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection
- Input: a table R
- Notation: $\sigma_p R$
 - p is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

Selection example
- Students with GPA higher than 3.0
 $\sigma_{GPA > 3.0} \text{Student}$

Projection
- Input: a table R
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example
- ID's and names of all students
 $\pi_{\text{SID, name}} \text{Student}$
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{Student} \]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)
- That means cross product is commutative, i.e., \(R \times S = S \times R \) for any \(R \) and \(S \)

Derived operator: join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \Join S \)
 - \(\rho \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(\rho \)
- Shorthand for \(\sigma_\rho (R \times S) \)

Join example

- Info about students, plus CID’s of their courses

\[\text{Student} \Join_{\text{Student.SID} = \text{Enroll.SID}} \text{Enroll} \]
Derived operator: natural join

- **Input:** two tables \(R \) and \(S \)
- **Notation:** \(R \bowtie S \)
- **Purpose:** relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- **Shorthand for** \(\pi_L(\pi_{\pi} R \bowtie S) \), where
 - \(\pi \) equates all attributes common to \(R \) and \(S \)
 - \(L \) is the union of all attributes from \(R \) and \(S \), with duplicate attributes removed

Natural join example

\[\text{Student} \bowtie \text{Enroll} = \pi, (\text{Student} \bowtie \text{Enroll}) \]
\[= \pi_{\text{SID, name, age, GPA, CID}} (\text{Student} \bowtie \text{Enroll}) \]

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS114</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Union

- **Input:** two tables \(R \) and \(S \)
- **Notation:** \(R \cup S \)
 - \(R \) and \(S \) must have identical schema
- **Output:**
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) and all rows in \(S \), with duplicate rows eliminated

Difference

- **Input:** two tables \(R \) and \(S \)
- **Notation:** \(R - S \)
 - \(R \) and \(S \) must have identical schema
- **Output:**
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) that are not found in \(S \)

Derived operator: intersection

- **Input:** two tables \(R \) and \(S \)
- **Notation:** \(R \cap S \)
 - \(R \) and \(S \) must have identical schema
- **Output:**
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows that are in both \(R \) and \(S \)
- **Shorthand for** \(R - (R - S) \)
- **Also equivalent to** \(S - (S - R) \)
- **And to** \(R \bowtie S \)

Renaming

- **Input:** a table \(R \)
- **Notation:** \(\rho_{A_1, A_2, \ldots} R \) or \(\rho_{A_1, A_2, \ldots} R \)
- **Purpose:** rename a table and/or its columns
- **Output:** a renamed table with the same rows as \(R \)
- **Used to**
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
Renaming example

- SID’s of students who take at least two courses

Expression tree syntax:

\[\pi_{SID}(Enroll \bowtie Enroll) \]

Summary of core operators

- Selection: \(\sigma_{p} R \)
- Projection: \(\pi_{L} R \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_{1}, A_{2}, ...} R \)
 - Does not really add “processing” power

Summary of derived operators

- Join: \(R \bowtie_{p} S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)
- Many more
 - Semijoin, anti-semijoin, quotient, …

An exercise

- Names of students in Lisa’s classes

A trickier exercise

- Who has the highest GPA?
- Who does NOT have the highest GPA?
- Whose GPA is lower than somebody else’s?

A deeper question: When (and why) is “−” needed?
Monotone operators

- Add more rows to the input...
- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator ϕ: $R \subseteq R'$ implies $\phi(R) \subseteq \phi(R')$

Classification of relational operators

- Selection: $\sigma_f R$
 - Monotone
- Projection: $\pi_l R$
 - Monotone
- Cross product: $R \times S$
 - Monotone
- Join: $R \bowtie S$
 - Monotone
- Natural join: $R \bowtie S$
 - Monotone
- Union: $R \cup S$
 - Monotone
- Difference: $R - S$
 - Monotone w.r.t. R; non-monotone w.r.t. S
- Intersection: $R \cap S$
 - Monotone

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Highest-GPA query is non-monotone
 - Current highest GPA is 4.1
 - Add another GPA 4.2
 - Old answer is invalidated
 - So it must use difference!

Why do we need core operator X?

- Difference
 - The only non-monotone operator
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection? Projection?
 - Homework problem 😊

Why is r.a. a good query language?

- Simple
 - A small set of core operators who semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus

- $\{ s.SID \mid s \in Student \land \neg \exists s' \in Student \colon s.GPA < s'.GPA \}$, or
- $\{ s.SID \mid s \in Student \land \forall s' \in Student \colon s.GPA \geq s'.GPA \}$
- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - $\{ s.name \mid \neg (s \in Student) \}$
 - Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation `Parent(parent, child)`, who are Bart’s ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!