Relational Database Design Theory
Part I

CPS 116
Introduction to Database Systems

Announcements (September 12)
- Homework #1 due next Tuesday
- Help session this Wednesday
 - 4:30pm or 5:30pm?
 - D344 LSRC
 - Email reminder tonight
- Course project assigned today
 - Choice of “standard” or “open”
 - Milestone 1 right after fall break
 - But plan/start early!!!

Motivation

- How do we tell if a design is bad, e.g., $\text{StudentEnroll}(\text{SID}, \text{name}, \text{CID})$?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jane</td>
<td>CPS116</td>
</tr>
<tr>
<td>14</td>
<td>Bart</td>
<td>CPS116</td>
</tr>
<tr>
<td>37</td>
<td>Lisa</td>
<td>CPS116</td>
</tr>
<tr>
<td>37</td>
<td>Lisa</td>
<td>CPS130</td>
</tr>
</tbody>
</table>

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>

- Must be δ Could be anything

FD examples

$\text{Address}(\text{street_address}, \text{city}, \text{state}, \text{zip})$
- $\text{street_address}, \text{city}, \text{state} \rightarrow \text{zip}$
- $\text{zip} \rightarrow \text{city}, \text{state}$
- $\text{zip}, \text{state} \rightarrow \text{zip}$
 - This is a trivial FD
 - Trivial FD: LHS \supset RHS
- $\text{zip} \rightarrow \text{state}, \text{zip}$
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation \(R \) and a set of FD’s \(F \)

- Does another FD follow from \(F \)?
 - Are some of the FD’s in \(F \) redundant (i.e., they follow from the others)?
- Is \(K \) a key of \(R \)?
 - What are all the keys of \(R \)?

Attribute closure

- Given \(R \), a set of FD’s \(F \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 - The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(F \) is the set of all attributes \(\{ A_1, A_2, \ldots \} \) functionally determined by \(Z \) (that is, \(Z \rightarrow A_1 A_2 \ldots \))
- Algorithm for computing the closure
 - Start with closure = \(Z \)
 - If \(X \rightarrow Y \) is in \(F \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 - Repeat until no more attributes can be added

A more complex example

\(\text{StudentGrade} \ (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade}) \)

- \(\text{SID} \rightarrow \text{name}, \text{email} \)
- \(\text{email} \rightarrow \text{SID} \)
- \(\text{SID}, \text{CID} \rightarrow \text{grade} \)

(Not a good design, and we will see why later)

Example of computing closure

- \(F \) includes:
 - \(\text{SID} \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)
- \(\text{email} \rightarrow \text{SID} \)
 - Add \(\text{SID} \); closure is now \(\{ \text{CID, email, SID} \} \)
- \(\text{SID} \rightarrow \text{name, email} \)
 - Add \(\text{name, email} \); closure is now \(\{ \text{CID, email, SID, name} \} \)
- \(\text{SID, CID} \rightarrow \text{grade} \)
 - Add \(\text{grade} \); closure is now all the attributes in \(\text{StudentGrade} \)

Using attribute closure

Given a relation \(R \) and set of FD’s \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)
- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(Z \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
Using rules of FD’s
Given a relation R and set of FD’s \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Use the rules to come up with a proof

Example:
- \mathcal{F} includes:
 - $SID \rightarrow name, email \rightarrow SID, SID, CID \rightarrow grade$
 - $email \rightarrow SID$ (given in \mathcal{F})
 - $CID, email \rightarrow CID, S ID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in \mathcal{F})
 - $CID, email \rightarrow grade$ (transitivity)

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

\[
\begin{align*}
X & \rightarrow Y \\
\{a, b, c\} & \rightarrow \{1, 2\}
\end{align*}
\]

That a is always associated with b is recorded by multiple rows: redundancy, update anomaly, deletion anomaly

Example of redundancy

- **StudentGrade** ($SID, name, email, CID, grade$)
- $SID \rightarrow name, email$

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

- Association between CID and $grade$ is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(R)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”

BCNF decomposition example

- StudentGrade $(\text{SID, name, email, CID, grade})$
- Student $(\text{SID, name, email})$
- Grade (SID, CID, grade)

BCNF
Another example

\[
\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})
\]

BCNF violation: \(\text{email} \rightarrow \text{SID} \)

\[
\text{StudentID} (\text{email}, \text{SID})
\]

BCNF

\[
\text{StudentGrade}' (\text{email}, \text{name}, \text{CID}, \text{grade})
\]

BCNF violation: \(\text{email} \rightarrow \text{name} \)

\[
\text{StudentName} (\text{email}, \text{name})
\]

BCNF

\[
\text{Grade} (\text{email}, \text{CID}, \text{grade})
\]

BCNF

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s