Announcements (October 3)

- Homework #2 graded
 - Solution was emailed during weekend
- Midterm in class this Thursday
 - Open book, open notes
 - Format similar to the sample midterm
 - Solution was emailed during weekend
 - Optional Gradiance problem set for practice is available
 - Covers everything up to today’s lecture
 - Emphasizes materials exercised in homeworks
- Project milestone #1 due next Thursday

A motivating example

- Example: find Bart’s ancestors
- "Ancestor" has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.

    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query

- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

- WITH Ancestor(anc, desc) AS
 - base case
 - recursion step
    ```sql
    (SELECT parent, child FROM Parent)
    UNION
    (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
    ```
 - Query using the relation defined in WITH clause

Fixed point of a function

- If \(f: T \to T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \)
- Example: What is the fixed point of \(f(x) = x / 2 \)?
 - 0, because \(f(0) = 0 / 2 = 0 \)
- To compute a fixed point of \(f \)
 - Start with a "seed": \(x \leftarrow x_0 \)
 - Compute \(f(x) \)
 - If \(f(x) = x \), stop; \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \); repeat
- Example: compute the fixed point of \(f(x) = x / 2 \)
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... \to 0
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \)

- To compute fixed point of \(q \)
 - Start with an empty table; \(T \leftarrow \emptyset \)
 - Evaluate \(q \) over \(T \)
 - If the result is identical to \(T \), stop; \(T \) is a fixed point
 - Otherwise, let \(T \) be the new result; repeat

 "Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone)"

Finding ancestors

```
WITH Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

Think of it as \( \text{Ancestor} = q(\text{Ancestor}) \)
```

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent step, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:

  ```sql
  WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
  
  Linear:
  ```

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
 -
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: a → b → c → d → e
 - Linear recursion takes 4 steps
 -

Mutual recursion example

- Table `Natural (n)` contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number

  ```sql
  WITH Even(n) AS
  (SELECT n FROM Natural
   WHERE n = ANY(SELECT n+1 FROM Odd)),
  Odd(n) AS
  ((SELECT n FROM Natural WHERE n = 1)
   UNION
   (SELECT n FROM Natural
    WHERE n = ANY(SELECT n+1 FROM Even)))
  ```
Operational semantics of \texttt{WITH}

\textbf{WITH} $R_1 \texttt{ AS } Q_1$, ..., $R_n \texttt{ AS } Q_n$

\textbullet{} Q_1, ..., Q_n may refer to R_1, ..., R_n

\textbf{Operational semantics}

1. $R_1 \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$
2. Evaluate Q_1, ..., Q_n using the current contents of R_1, ..., R_n:
 \[R_1^{\text{new}} \leftarrow Q_1, ..., R_n^{\text{new}} \leftarrow Q_n \]
3. If $R_i^{\text{new}} \neq R_i$ for any i:
 \[R_i \leftarrow R_i^{\text{new}}, ..., R_n \leftarrow R_n^{\text{new}} \]
 3.2. Go to 2.
4. Compute Q using the current contents of R_1, ..., R_n and output the result.

Computing mutual recursion

\textbf{WITH Even}(n) \texttt{ AS }

\begin{verbatim}
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) \texttt{ AS }
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))
\end{verbatim}

\textbullet{} $\text{Even} = \emptyset$, $\text{Odd} = \emptyset$
\textbullet{} $\text{Even} = \emptyset$, $\text{Odd} = \{1\}$
\textbullet{} $\text{Even} = \{2\}$, $\text{Odd} = \{1\}$
\textbullet{} $\text{Even} = \{2, 4\}$, $\text{Odd} = \{1, 3\}$
\textbullet{} $\text{Even} = \{2, 4\}$, $\text{Odd} = \{1, 3, 5\}$
\textbullet{} ...

Fixed points are not unique

\textbf{WITH Ancestor}(anc, desc) \texttt{ AS }

\begin{verbatim}
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
\end{verbatim}

\textbullet{} There may be many other fixed points
\textbullet{} But if q is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \emptyset

Thus the unique minimal fixed point is the "natural" answer to the query

\begin{verbatim}
\textbf{WITH Ancestor}(anc, desc) \texttt{ AS }
\end{verbatim}

\textbf{Parent (parent, child)}

\begin{tabular}{|l|l|}
\hline
\texttt{parent} & \texttt{child} \\
\hline
Homer & Bart \\
Homer & Lisa \\
Marge & Bart \\
Marge & Lisa \\
Abe & Homer \\
Ape & Abe \\
Abe & Bart \\
Abe & Lisa \\
Ape & Homer \\
Ape & Bart \\
Ape & Lisa \\
\hline
\end{tabular}

Note that the bogus tuple reinforces itself!
Mixing negation with recursion

- If q is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?

- Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Fixed-point iteration does not converge

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Student

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Scholarship DeansList Scholarship DeansList

<table>
<thead>
<tr>
<th>SID</th>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
<tr>
<td>999</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
</tbody>
</table>

Multiple minimal fixed points

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Student

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Scholarship DeansList Scholarship DeansList

<table>
<thead>
<tr>
<th>SID</th>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
<tr>
<td>999</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
<tr>
<td>999</td>
<td>Scholarship</td>
<td>DeansList</td>
</tr>
</tbody>
</table>
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \rightarrow S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge "–" if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a "–" edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled "–"

Stratified negation example

- Find pairs of persons with no common ancestors

```sql
WITH Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent) UNION
     (SELECT a1.anc, a2.desc
      FROM Ancestor a1, Ancestor a2
      WHERE a1.desc = a2.anc)),

Person(person) AS
    ((SELECT parent FROM Parent) UNION
     (SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
    ((SELECT p1.person, p2.person
      FROM Person p1, Person p2
      WHERE p1.person <> p2.person)
     EXCEPT
     (SELECT a1.desc, a2.desc
      FROM Ancestor a1, Ancestor a2
      WHERE a1.anc = a2.anc)),

SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node \(R \) is the maximum number of "–" edges on any path from \(R \) in the dependency graph
 - \(Ancestor \): stratum 0
 - \(Person \): stratum 0
 - \(NoCommonAnc \): stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: \(Ancestor \) and \(Person \)
 - Stratum 1: \(NoCommonAnc \)
- Intuitively, there is no negation within each stratum
Summary
- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)