Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements (October 12)
- Midterm graded; sample solution available
 - Please verify your grades on Blackboard
- Project milestone #1 due today

Review
- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
- Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into
 $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
- Schema in BCNF has no redundancy due to FD's
Next

- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF

- Address (street_address, city, state, zip)
 - street_address, city, state → zip
 - zip → city, state
- Keys
 - {street_address, city, state}
 - {street_address, zip}
- BCNF?

To decompose or not to decompose

Address₁ (zip, city, state)
Address₂ (street_address, zip)
- FD’s in Address₁
- FD’s in Address₂
- Hey, where is street_address, city, state → zip?
 - Cannot check without joining Address₁ and Address₂, back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- R is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$ (where A is a single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R

- Intuitively, BCNF decomposition on $X \rightarrow A$ would “break” the key containing A
- So $Address$ is already in 3NF
- Tradeoff:
 - Can enforce all original FD’s on individual decomposed relations
 - Might have some redundancy due to FD’s

BNCF = no redundancy?

- Student ($SID, CID, club$)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - $SID \rightarrow CID$
 - BNCF?
 - Redundancies?

Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R
MVD examples

Student (SID, CID, club)

- SID → CID

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If \(X \rightarrow Y \), then \(X \rightarrow \text{attr}(R) - X - Y \)
- MVD augmentation:
 - If \(X \rightarrow Y \) and \(V \subseteq W \), then \(XW \rightarrow YV \)
- MVD transitivity:
 - If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z - Y \)
- Replication (FD is MVD):
 - If \(X \rightarrow Y \), then \(X \rightarrow Y \)
- Coalescence:
 - If \(X \rightarrow Y \) and \(Z \subseteq Y \) and there is some \(W \) disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)

An elegant solution: chase

- Given a set of FD’s and MVD’s \(D \), does another dependency \(d \) (FD or MVD) follow from \(D \)?
- Procedure
 - Start with the hypothesis of \(d \), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(D \) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d \), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

\(\star \) In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(\star)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(\star)</td>
</tr>
</tbody>
</table>

Another proof by chase

\(\star \) In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(b_1 = b_2)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(c_1 = c_2)</td>
</tr>
</tbody>
</table>

In general, both new tuples and new equalities may be generated.

Counterexample by chase

\(\star \) In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(b_1 = b_2)</td>
</tr>
</tbody>
</table>

Counterexample!
4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s, and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

- 4NF violation: $SID \rightarrow CID$
- Decompose into
 - Student $(SID, CID, club)$
 - Enroll (SID, CID)
 - Join $(SID, club)$
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Of historical interests**
 - 1NF: All column values must be atomic
 - 2NF: Slightly more relaxed than 3NF

Summary

- **Philosophy behind BCNF, 4NF:**
 Data should depend on the key, the whole key, and nothing but the key!

- **Philosophy behind 3NF:**
 ... But not at the expense of more expensive constraint enforcement!