Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements (October 12)
- Midterm graded; sample solution available
- Please verify your grades on Blackboard
- Project milestone #1 due today

Review
- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
 - Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
 - Schema in BCNF has no redundancy due to FD’s

Next
- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF
- $Address (street_address, city, state, zip)$
 - $street_address, city, state \rightarrow zip$
 - $zip \rightarrow city, state$
- Keys
 - $\{street_address, city, state\}$
 - $\{street_address, zip\}$
- BCNF?
 - Violation: $zip \rightarrow city, state$

To decompose or not to decompose

$Address_1 (zip, city, state)$
$Address_2 (street_address, zip)$
- FD’s in $Address_1$
 - $zip \rightarrow city, state$
- FD’s in $Address_2$
 - None!
- Hey, where is $street_address, city, state \rightarrow zip$?
 - Cannot check without joining $Address_1$ and $Address_2$ back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF
- R is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$ (where A is a single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
- Intuitively, BCNF decomposition on $X \rightarrow A$ would "break" the key containing A
- So $Address$ is already in 3NF
- Tradeoff:
 - Can enforce all original FD's on individual decomposed relations
 - Might have some redundancy due to FD's

BCNF = no redundancy?
- $Student$ ($SID, CID, club$)
 - Suppose your classes have nothing to do with the clubs you join
 - FD's?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS116</td>
<td>sumo</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>chess</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>golf</td>
</tr>
</tbody>
</table>

Multivalued dependencies
- A multivalued dependency (MVD) has the form $X \Rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \Rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Must be in R too</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MVD examples
- $Student$ ($SID, CID, club$)
 - $SID \Rightarrow CID$
 - $SID \Rightarrow club$
 - Intuition: given SID, CID and club are "independent"
 - $SID, CID \Rightarrow club$
 - Trivial: LHS \cup RHS $=$ all attributes of R
 - $SID, CID \Rightarrow SID$
 - Trivial: LHS \supset RHS

Complete MVD + FD rules
- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If $X \Rightarrow Y$, then $X \Rightarrow \text{attr}(R) - X - Y$
- MVD augmentation:
 - If $X \Rightarrow Y$ and $Y \subseteq W$, then $XW \Rightarrow YY$
- MVD transitivity:
 - If $X \Rightarrow Y$ and $Y \Rightarrow Z$, then $X \Rightarrow Z - Y$
- Replication (FD is MVD):
 - If $X \Rightarrow Y$, then $X \Rightarrow Y$
- Coalescence:
 - If $X \Rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: chase
- Given a set of FD's and MVD's D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$\begin{bmatrix} x \mid y \mid z \mid w \end{bmatrix}$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>$\begin{bmatrix} x \mid y \mid z \mid w \end{bmatrix}$</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$\begin{bmatrix} x \mid y \mid z \mid w \end{bmatrix}$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>$\begin{bmatrix} x \mid y \mid z \mid w \end{bmatrix}$</td>
</tr>
</tbody>
</table>

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow BC$</td>
<td>$\begin{bmatrix} x \mid y \mid z \mid w \end{bmatrix}$</td>
</tr>
</tbody>
</table>

$4NF$

- A relation R is in Fourth Normal Form (4NF) if:
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s, and no FD’s besides key functional dependencies)

$4NF$ is stronger than BCNF

- Because every FD is also a MVD

$4NF$ decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
 - Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

$4NF$ decomposition example

- Student $(SID, CID, club)$
 - 4NF violation: $SID \rightarrow CID$

- Enroll (SID, CID)
 - 4NF

- Join $(SID, club)$
 - 4NF
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- Of historical interests
 - 1NF: All column values must be atomic
 - 2NF: Slightly more relaxed than 3NF

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!

- Philosophy behind 3NF:
 … But not at the expense of more expensive constraint enforcement!