Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 16)

❖ Homework #4 (last one and short) will be assigned next Tuesday

Query optimization

❖ One logical plan → “best” physical plan
❖ Questions
 • How to enumerate possible plans
 • How to estimate costs
 • How to pick the “best” one
❖ Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
- Merge/split σ: $\sigma_p (\sigma_q R) = \sigma_{p \wedge q} R$
- Merge/split π: $\pi_L (\pi_{L'} R) = \pi_{L
setminus L'} R$, where $L \subseteq L$
- Push down/pull up σ:
 - $\sigma_{p \wedge p'} (R \bowtie_p S) = (\sigma_{p'} R) \bowtie_{p \wedge p'} (\sigma_p S)$, where
 - p is a predicate involving only R columns
 - p' is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π: $\pi_L (\sigma_{p \wedge p'} R) = \pi_{L' \cup L} (\sigma_p (\sigma_{p'} R))$, where
 - L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

- Convert $\sigma_p \times$ to \bowtie_p
- Push down σ
- Convert $\sigma_p \bowtie_p$ to \bowtie_p
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll - DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

```
PROJECT (title)
MERGE-JOIN (CID)
SORT (CID)
```

Input to SORT(CID):

```
MERGE-JOIN (CID)
SCAN (Course)
SORT (CID)
```

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{CID}) \) takes \(2 \times B(\text{input}) \)
 - But what is \(B(\text{input}) \)?
- We need: size of intermediate results

Selections with equality predicates

- \(Q: \sigma_A = v \ R \)
- Suppose the following information is available
 - Size of \(R \): \(| R |\)
 - Number of distinct \(A \) values in \(R \): \(| \pi_A R |\)
- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R.A \) values
- \(| Q | \approx | R | / | \pi_A R |\)
 - Selectivity factor of \((A = v)\) is \(1 / | \pi_A R |\)

Conjunctive predicates

- \(Q: \sigma_A = a \text{ and } B = v \ R \)
- Additional assumptions
 - \((A = a)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A \) is the key
- \(| Q | \approx | R | / (| \pi_A R | \cdot | \pi_B R |)\)
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

- $Q: \sigma_{A \neq v} R$
 - $|Q| \approx |R| \cdot (1 - 1/|\pi_A R|)$
 - Selectivity factor of $\neg p$ is $1 - $ selectivity factor of p

- $Q: \sigma_{A = u \text{ or } B = v} R$
 - $|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)$
 -
 -

Range predicates

- $Q: \sigma_{A > u} R$
 - Not enough information!
 - Just pick, say, $|Q| \approx |R| \cdot 1/3$
 - With more information
 - Largest $R.A$ value: high($R.A$)
 - Smallest $R.A$ value: low($R.A$)
 - $|Q| \approx |R| \cdot (\text{high}(R.A) - v)/(\text{high}(R.A) - \text{low}(R.A))$
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
 - Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
 - $|Q| \approx$
 - Selectivity factor of $R.A = S.A$ is
Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1 / \max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1 / \max(|\pi_C S|, |\pi_C T|) \)
 - \(|Q| \approx (|R| \cdot |S| \cdot |T|) / (\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”

SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- “Bushy” plan example:

![Bushy plan diagram]

- Just considering different join orders, there are
 \[(2n - 2)! / (n - 1)\] bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 - 30240 for \(n = 6\)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_j = \sigma R_i\)
- Start with the pair \(S_j, S_i\) with the smallest estimated size for \(S_j \bowtie S_i\)
- Repeat until no relation is left:
 - Pick \(S_j\) from the remaining relations such that the join of \(S_j\) and the current result yields an intermediate result of the smallest size

![Greedy algorithm diagram]
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.).

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach