Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical question can be answered using knowledge of the material combined with some thought and analysis.

1. **Hessian** (two credits). Compute the Hessian and, if defined, the index of the origin, which is critical for each function in the list below.

 (i) \(f(x_1, x_2) = x_1^2 + x_2^2. \)

 (ii) \(f(x_1, x_2) = x_1x_2. \)

 (iii) \(f(x_1, x_2) = (x_1 + x_2)^2. \)

 (iv) \(f(x_1, x_2, x_3) = x_1x_2x_3. \)

 (v) \(f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3. \)

 (vi) \(f(x_1, x_2, x_3) = (x_1 + x_2 + x_3)^2. \)

2. **Approximate Morse function** (two credits). Let \(M \) be a geometrically perfect torus in \(\mathbb{R}^3 \), that is, \(M \) is swept out by a circle rotating about a line that lies in the same plane but does not intersect the circle. Let \(f : M \to \mathbb{R} \) measure height parallel to the symmetry axis and note that \(f \) is not Morse.

 (i) Describe a Morse function \(g : M \to \mathbb{R} \) that differs from \(f \) by an arbitrarily small amount, \(\|f - g\|_\infty < \varepsilon. \)

 (ii) Draw the Reeb graphs of both functions.

3. **Morse-Smale complex** (two credits). Let \(M \) be the torus in Question 2 and let \(f : M \to \mathbb{R} \) measure height along a direction that is almost but not quite parallel to the symmetry axis of the torus.

 (i) Draw the Morse-Smale complex of the height function.

 (ii) Give the chain, cycle, boundary groups defined by Floer homology.

4. **Quadrangles** (three credits). Let \(M \) be a 2-manifold and \(f : M \to \mathbb{R} \) a Morse-Smale function.

 (i) Prove that each 2-dimensional cell of the Morse-Smale complex of \(f \) is a quadrangle. In other words, each 2-dimensional cell is an open disk whose boundary can be decomposed into four arcs each glued to an edge in the complex.

 (ii) Draw a case in which one edge is repeated so that the disk is glued to only three edges but twice to one of the three.
5. **Distance from a point** (three credits). Let \(M \) be the torus swept out by a unit circle rotating at unit distance from the \(x_3 \)-axis. More formally, \(M \) consists of all solutions to \(x_1^2 + x_2^2 = (2 \pm \sqrt{1-x_3^2})^2 \) in \(\mathbb{R}^3 \). For a point \(z \in \mathbb{R}^3 \) consider the function \(f_z : M \to \mathbb{R} \) defined by \(f_z(x) = ||x - z|| \).

(i) Describe the set of points \(z \) for which \(f_z \) violates property (i) of a Morse function.

(ii) Describe the set of points \(z \) for which \(f_z \) is not a Morse function.

6. **Non-simple PL critical point** (one credit). Let \(K \) be a triangulation of a 3-manifold and \(f : K \to \mathbb{R} \) a generic PL function.

(i) Assuming \(f \) is a PL Morse function, draw the lower links of the four types of simple PL critical points that can occur.

(ii) Assuming \(f \) is not a PL Morse function, draw the lower link of a non-simple PL critical point.

7. **Lower and upper star filtrations** (one credit). Let \(K \) be a simplicial complex, \(f : K \to \mathbb{R} \) a generic PL function, and \(f(u_1) < f(u_2) < \ldots < f(u_n) \) the ordering of the vertices by function value. For \(0 \leq i \leq n \) let \(K_i \) be the union of lower stars of the first \(i \) vertices and let \(K^i \) be the union of upper stars of the last \(n - i \) vertices. Let \(f(u_i) < t < f(u_{i+1}) \).

(i) Prove that the sublevel set for threshold \(t \), \(f^{-1}(-\infty, t] \), has the same homotopy type as \(K_i \).

(ii) Prove that the superlevel set for threshold \(t \), \(f^{-1}[t, \infty) \), has the same homotopy type as \(K^i \).

8. **Morse inequalities** (two credits). Recall that the unstable manifolds of a Morse function \(f : \mathbb{M} \to \mathbb{R} \) are the stable manifolds of \(-f\). Furthermore, if \(\mathbb{M} \) is a \(d \)-manifold then an index \(p \) critical point of \(f \) is an index \(d - p \) critical point of \(-f\).

(i) Use this symmetry to formulate collections of inequalities symmetric to the weak and strong Morse inequalities of \(f \).

(ii) Use these inequalities to prove that the Euler characteristic of \(\mathbb{M} \) vanishes if \(d \) is odd.