A Polynomial-Time Algorithm
for Action-Graph Games

Albert Xin Jiang Kevin Leyton-Brown
Department of Computer Science
University of British Columbia
{jiang;kevinlb}@cs.ubc.ca

Draft of April 18, 2006

Abstract

Action-Graph Games (AGGs) [Bhat & Leyton-Brown, 2004] are a fully
expressive game representation which can compactly express strict and
context-specific independence and anonymity structure in players’ utility
functions. We present an efficient algorithm for computing expected pay-
offs under mixed strategy profiles. This algorithm runs in time polynomial
in the size of the AGG representation (which is itself polynomial in the
number of players when the in-degree of the action graph is bounded).
We also present an extension to the AGG representation which allows us
to compactly represent a wider variety of structured utility functions.We
would like to acknowledge the contributions of Navin A.R. Bhat, who is
one of the authors of the paper which this work extends.

1 Introduction

Game-theoretic models have recently been very influential in the computer sci-
ence community. In particular, simultaneous-action games have received con-
siderable study, which is reasonable as these games are in a sense the most
fundamental. In order to analyze these models, it is often necessary to com-
pute game-theoretic quantities ranging from expected utility to Nash equilibria.

Most of the game theoretic literature presumes that simultaneous-action
games will be represented in normal form. This is problematic because quite
often games of interest have a large number of players and a large set of action
choices. In the normal form representation, we store the game’s payoff function
as a matrix with one entry for each player’s payoff under each combination of all
players’ actions. As a result, the size of the representation grows exponentially
with the number of players. Even if we had enough space to store such games,
most of the computations we’d like to perform on these exponential-sized objects
take exponential time.

Fortunately, most large games of any practical interest have highly struc-
tured payoff functions, and thus it is possible to represent them compactly.
(Intuitively, this is why humans are able to reason about these games in the
first place: we understand the payoffs in terms of simple relationships rather
than in terms of enormous look-up tables.) One influential class of representa-
tions exploit strict independencies between players’ utility functions; this class
include graphical games [Kearns et al., 2001], multi-agent influence diagrams
[Koller & Milch, 2001], and game nets [LaMura, 2000]. A second approach
to compactly representing games focuses on contezt-specific independencies in
agents’ utility functions — that is, games in which agents’ abilities to affect each
other depend on the actions they choose. Since the context-specific indepen-
dencies considered here are conditioned on actions and not agents, it is often
natural to also exploit anonymity in utility functions, where each agent’s utili-
ties depend on the distribution of agents over the set of actions, but not on the
identities of the agents. Examples include congestion games [Rosenthal, 1973]
and local effect games (LEGs) [Leyton-Brown & Tennenholtz, 2003]. Both of
these representations make assumptions about utility functions, and as a result
cannot represent arbitrary games. Bhat and Leyton-Brown [2004] introduced
action graph games (AGGs). Similar to LEGs, AGGs use graphs to repre-
sent the context-specific independencies of agents’ utility functions, but unlike
LEGs, AGGs can represent arbitrary games. Bhat & Leyton-Brown proposed
an algorithm for computing expected payoffs using the AGG representation.
For AGGs with bounded in-degree, their algorithm is exponentially faster than
normal-form-based algorithms, yet still exponential in the number of players.

In this paper we make several significant improvements to results in [Bhat
& Leyton-Brown, 2004]. In Section 3, we present an improved algorithm
for computing expected payoffs. Our new algorithm is able to better exploit
anonymity structure in utility functions. For AGGs with bounded in-degree,
our algorithm is polynomial in the number of players. In Section 4, we extend
the AGG representation by introducing function nodes. This feature allows us
to compactly represent a wider range of structured utility functions. We also
describe computational experiments in Section 6 which confirm our theoretical
predictions of compactness and computational speedup.

2 Action Graph Games

2.1 Definition

An action-graph game (AGG) is a tuple (N, S,v,u). Let N = {1,...,n} denote
the set of agents. Denote by S = [[,. Si the set of action profiles, where [] is
the Cartesian product and S; is agent i’s set of actions. We denote by s; € .5;
one of agent i’s actions, and s € S an action profile.

Agents may have actions in common. Let S = J,cy Si denote the set of
distinct actions choices in the game. Let A denote the set of configurations of
agents over actions. A configuration D € A is an ordered tuple of |S| integers

(D(s),D(s'),...), with one integer for each action in S. For each s € S, D(s)
specifies the number of agents that chose action s € S. Let D : S — A be the
function that maps from an action profile s to the corresponding configuration
D. These shared actions express the game’s anonymity structure: agent ¢’s
utility depends only on her action s; and the configuration D(s).

Let G be the action graph: a directed graph having one node for each action
s € S. The neighbor relation is given by v : S + 25. If s’ € v(s) there is
an edge from &' to 5. Let D) denote a configuration over v(s), i.e. D) is a
tuple of |v(s)| integers, one for each action in v(s). Intuitively, agents are only
counted in D) if they take an action which is an element of v(s). A®) is the set
of configurations over v(s) given that some player has played s.! Similarly we
define D) : S — A®) which maps from an action profile to the corresponding
configuration over v(s).

The action graph expresses context-specific independencies of utilities of the
game: Vi € N, if ¢ chose action s; € S, then ¢’s utility depends only on the
numbers of agents who chose actions connected to s, which is the configuration
D) (s). In other words, the configuration of actions not in v/(s;) does not affect
’s utility.

We represent the agents’ utilities using a tuple of | S| functions u = (u®,u® ,...),
one for each action s € S. BEach u® is a function u® : A®®) — R. So if agent
i chose action s, and the configuration over v(s) is D) then agent i’s utility
is u®(D®)). Observe that all agents have the same utility function, i.e. con-
ditioned on choosing the same action s, the utility each agent receives does
not depend on the identity of the agent. For notational convenience, we define
u(s, D)) = u*(D®)) and u;(s) = u(s;, D) (s)).

2.2 Examples

Any arbitrary game can be encoded as an AGG as follows. Create a unique node
s; for each action available to each agent i. Thus Vs € S, D(s) € {0,1}, and
Vi, Y s D(s) must equal 1. The distribution simply indicates each agent’s
action choice, and the representation is no more or less compact than the normal
form (see Section 2.3 for a detailed analysis).

Example 1. Figure 1 shows an arbitrary 3-player, 3-action game encoded as
an AGG. As always, nodes represent actions and directed edges represent mem-
bership in a node’s neighborhood. The dotted boxes represent the players’ action
sets: player 1 has actions 1, 2 and 3; etc. Observe that there is always an edge
between pairs of nodes belonging to different action sets, and that there is never
an edge between nodes in the same action set.

In a graphical game [Kearns et al., 2001] nodes denote agents and there is
an edge connecting each agent ¢ to each other agent whose actions can affect

LIf action s is in multiple players’ action sets (say players 4, j), and these action sets do
not completely overlap, then it is possible that the set of configurations given that ¢ played s
(denoted A“’Vi)) is different from the set of configurations given that j played s. A is the
union of these sets of configurations.

% G

Figure 1: AGG rep- Figure 2: AGG rep-

resentation of an arbi- resentation of a 3- Figure 3: AGG rep-
trary 3-player, 3-action player, 3-action graph- resentation of the ice
game ical game cream vendor game

R
Q9O

©’s utility. Each agent then has a payoff matrix representing his local game
with neighboring agents; this representation is more compact than normal form
whenever the graph is not a clique. Graphical games can be represented as
AGGs by replacing each node i in the graphical game by a distinct cluster of
nodes S; representing the action set of agent ¢. If the graphical game has an
edge from i to j, create edges so that Vs, € S;,Vs; € S, s; € v(s;). The
resulting AGG representations are as compact as the original graphical game
representations.

Example 2. Figure 2 shows the AGG representation of a graphical game having
three nodes and two edges between them (i.e., player 1 and player 3 do not di-
rectly affect each others’ payoffs). The AGG may appear more complex than the
graphical game; in fact, this is only because players’ actions are made explicit.

The AGG representation becomes even more compact when agents have
actions in common, with utility functions depending only on the number of
agents taking these actions rather than on the identities of the agents.

Example 3. The action graph in Figure 3 represents a setting in which n ven-
dors sell chocolate or vanilla ice creams, and must choose one of four locations
along a beach. There are three kinds of vendors: ne chocolate (C) vendors, ny
vanilla vendors, and ny wvendors that can sell both chocolate and vanilla, but
only on the west side. Chocolate (vanilla) vendors are negatively affected by the
presence of other chocolate (vanilla) vendors in the same or neighboring loca-
tions, and are simultaneously positively affected by the presence of nearby vanilla
(chocolate) vendors. Note that this game exhibits context-specific independence
without any strict independence, and that the graph structure is independent of
n.

Other examples of compact AGGs that cannot be compactly represented as
graphical games include: location games, role formation games, traffic routing
games, product placement games and party affiliation games.

2.3 Size of an AGG Representation

We have claimed that action graph games provide a way of representing games
compactly. But what exactly is the size of an AGG representation? And how
does this size grow as the number of agents n grows? From the definition of
AGG in Section 2.1, we observe that we need the following to completely specify
an AGG:

e The set of agents N = {1,...,n}. This can be specified by the integer n.

e The set of actions S.

Each agent’s action set S; C S.

The action graph G. The set of nodes is S, which is already specified. The
neighbor relation v can be straightforwardly represented as neighbor lists:
for each node s € S we specify its list of neighbors v(s) C S. The space
required is) ¢ [v(s)[, which is bounded by |S|Z, where 7 = max; [v(s)|,
i.e. the maximum in-degree of the action graph.

For each action s, the utility function u® : A®) — R. We need to specify
a utility value for each distinct configuration D) € A(). The set of
configurations A(®) can be derived from the action graph, and can be
sorted in lexicographical order. So we do not need to explicitly specify
A®); we can just specify a list of |A(®)| utility values that correspond
to the (ordered) set of configurations.? |A(®)|, the number of distinct
configurations over v(s), in general does not have a closed-form expression.
Instead, we consider the operation of extending all agents’ action sets via
Vi : S; — S. Now the number of configurations over v(s) is an upper
bound on |A®)|. The bound is the number of (ordered) combinatorial

compositions of n—1 (since one player has already chosen s) into |v(s)|+1
(n=1+]v(s)D!

nonnegative integers, which is I OE Then the total space required
for the utilities is bounded from above by |S |((7;;_175,II),‘

Therefore the size of an AGG representation is dominated by the size of its utility

functions, which is bounded by |S |% If 7 is bounded by a constant as

n grows, the representation size grows like O(|S|n?), i.e. polynomially with
respect to n.

The AGG representation achieves compactness by exploiting two types of
structure in the utilities:

1. Anonymity: agent i’s utility depends only on her action s; and the
configuration (i.e. number of players that play each action), but not on

2This is the most compact way of representing the utility functions, but does not provide
easy random access of the utilities. Therefore, when we want to do computation using AGG,
we may convert each utility function u® to a data structure that efficiently implements a
mapping from sequences of integers to (floating-point) numbers, (e.g. tries, hash tables or
Red-Black trees), with space complexity in the order of O(Z|A(®)]).

the identities of the players. Since the number of configurations |A| is
usually less than the number of action profiles [S| = [, |S;| and is never
greater, we need fewer numbers to represent the utilities in AGG compared
to the normal form.

2. Context-specific independence: for each node s € S, the utility func-
tion u* only needs to be defined over A®). Since |A®)] is usually less
than |A| and is never greater, this further reduces the numbers we need
to specify.

For each AGG, there exists a unique induced normal form representation
with the same set of players and |S;| actions for each i; its utility function is a
matrix that specifies each player i’s payoff for each possible action profile s € S.
This implies a space complexity of n], [S;|. When S; = S for all 4, this
becomes n|S|™, which grows exponentially with respect to n.

Theorem 1. The number of payoff values stored in an AGG representation is
always less or equal to the number of payoff values in the induced normal form
representation.

Proof. For each entry in the induced normal form which represents i’s utility
under action profile s, there exists a unique action profile s in the AGG with the
corresponding action for each player. This s induces a unique configuration D(s)
over the AGG’s action nodes. By construction of the AGG utility functions,
D(s) together with s; determines a unique utility u (D! (s)) in the AGG.
Furthermore, there are no entries in the AGG utility functions that do not
correspond to any action profile (s;,s_;) in the normal form. This means that
there exists a many-to-one mapping from entries of normal form to utilities in
the AGG. O

Of course, the AGG representation has the extra overhead of representing
the action graph, which is bounded by |S|Z. But asymptotically, AGG’s space
complexity is never worse than the equivalent normal form.

3 Computing with AGGs

One of the main motivations of compactly representing games is to do efficient
computation on the games. We have introduced AGG as a compact represen-
tation of games; now we would like to exploit the compactness of the AGG
representation when we do computation. We focus on the computational task
of computing expected payoffs under a mixed strategy profile. Besides being
important in itself, this task is an essential component of many game-theoretic
applications, e.g. computing best responses, Govindan and Wilson’s continua-
tion methods for finding Nash equilibria [Govindan & Wilson, 2003; Govindan &
Wilson, 2004], the simplicial subdivision algorithm for finding Nash equilibria
[van der Laan et al., 1987], and finding correlated equilibria using Papadim-
itriou’s algorithm [Papadimitriou, 2005].

Besides exploiting the compactness of the representation, we would also like
to be able to exploit the fact that quite often the mixed strategy profile given
will have small support. The support of a mixed strategy o; is the set of pure
strategies played with positive probability (i.e. o;(s;) > 0). Quite often games
have Nash equilibria with small support. Porter et al. [2004] proposed algo-
rithms that explicitly search for Nash equilibria with small support. In other
algorithms for computing Nash equilibria such as Govindan-Wilson and sim-
plicial subdivision, quite often we will also be computing expected payoffs for
mixed strategy profiles with small support. Our algorithm appropriately ex-
ploits strategy profiles with small supports.

3.1 Notation

Let ©(X) denote the set of all probability distributions over a set X. Define
the set of mixed strategies for i as 3; = ¢(95;), and the set of all mixed strategy
profiles as ¥ =[],y Xi. We denote an element of ¥; by o3, an element of ¥
by o, and the probability that ¢ plays action s as o;(s).

Define the expected utility to agent ¢ for playing pure strategy s;, given that
all other agents play the mixed strategy profile o_;, as

Vilo)= Y wilsi;s_i)Pr(silo). (1)

s_i€S_;

where Pr(s_;lo_;) = [[,4; 0;(s;) is the probability of s_; under the mixed
strategy o_;.

The set of i’s pure strategy best responses to a mixed strategy profile o_;
is arg max, Vi(o_;), and hence the full set of i’s pure and mixed strategy best
responses to o_; is

BR;(0_;) = p(arg max Vi (o_;)). (2)
A strategy profile o is a Nash equilibrium iff

Vi €N, o; EBRZ‘(O’,Z‘). (3)

3.2 Computing V/ (0_;)

Equation (1) is a sum over the set S_; of action profiles of players other than
i. The number of terms is [, [S;|, which grows exponentially in n. Thus
Equation (1) is an exponential time algorithm for computing V{ (o_;). If we
were using the normal form representation, there really would be |S_;| different
outcomes to consider, each with potentially distinct payoff values, so evaluation
Equation (1) is the best we could do for computing V.

Can we do better using the AGG representation? Since AGGs are fully
expressive, representing a game without any structure as an AGG would not
give us any computational savings compared to the normal form. Instead, we

are interested in structured games that have a compact AGG representation.
In this section we present an algorithm that given any ¢, s; and o_;, computes
the expected payoff V;l (o—;) in time polynomial with respect to the size of the
AGG representation. In other words, our algorithm is efficient if the AGG is
compact, and requires time exponential in n if it is not. In particular, recall
that for classes of AGGs whose in-degrees are bounded by a constant, their sizes
are polynomial in n. As a result our algorithm will be polynomial in n for such
games.

First we consider how to take advantage of the context-specific independence
structure of the AGG, i.e. the fact that i’s payoff when playing s; only depends
on the configurations in the neighborhood of i. This allows us to project the
other players’ strategies into smaller action spaces that are relevant given s;.
This is illustrated in Figure 4, using the ice cream vendor game (Figure 3).
Intuitively we construct a graph from the point of view of an agent who took a
particular action, expressing his indifference between actions that do not affect
his chosen action. This can be thought of as inducing a context-specific graphical
game. Formally, for every action s € S define a reduced graph G by including
only the nodes v(s) and a new node denoted). The only edges included in G(*)

are the directed edges from each of the nodes v(s) to the node s. Player j’s
(s)

action s; is projected to a node s;” in the reduced graph G) by the following

mapping:

o _ | s sjev(s)

% —{ 0 s guls) @
In other words, actions that are not in v(s) (and therefore do not affect the
payoffs of agents playing s) are projected to (). The resulting projected action

set Sj@ has cardinality at most min(|S;|, |v(s)| + 1).
We define the set of mixed strategies on the projected action set SJ(-S) by
2 = »(S). A mixed strategy o; on the original action set S; is projected
J J J J

to 0'(3)

;€ Z;S) by the following mapping;:

() _ o (s5) sj € v(s) .
) { 23/657‘,\1/(5) Uj(s/) 859) =0 ()

So given s; and o_;, we can compute o) in O(nl|S|) time in the worst case.

—1
Now we can operate entirely on the projected space, and write the expected
payoff as

Vilo) = 30 ulsi Do 5-0)) Pris o)

—1

sCPestn

where Pr(s(j) a(j)) = Hj# UJ(-Si)(sg-Si)). The summation is over S(j), which in

the worst case has (|v(s;)| + 1)~ terms. So for AGGs with strict or context-
specific independence structure, computing V' (c_;) this way is much faster

(C1)
Sy
s{e

L i e e T pp———

Figure 4: Projection of the action graph. Left: action graph of the ice cream
vendor game. Right: projected action graph and action sets with respect to the
action C1.

than doing the summation in (1) directly. However, the time complexity of this
approach is still exponential in n.

Next we want to take advantage of the anonymity structure of the AGG.
Recall from our discussion of representation size that the number of distinct
configurations is usually smaller than the number of distinct pure action profiles.
So ideally, we want to compute the expected payoff V; (o_;) as a sum over the
possible configurations, weighted by their probabilities:

Vi(o_;) = Z ui(si, DY Pr(DED) | (51)) (6)
D(Si)eA(Si,i)

where ¢(*!) = (si,a(_si)) and

9

N
o)) = > [Teitsi) (7)

s:D(si) (s)=D(s4) j=1

Pr(D?)

which is the probability of D(*?) given the mixed strategy profile 0(*). Equation
(6) is a summation of size |A(*#?)|, the number of configurations given that i
played s;, which is polynomial in n if Z is bounded. The difficult task is to
compute Pr(DG)|g(5)) for all D) € Al5::) je. the probability distribution
over A9 induced by ¢(*). We observe that the sum in Equation (7) is over
the set of all action profiles corresponding to the configuration D(*?). The size
of this set is exponential in the number of players. Therefore directly computing
the probability distribution using Equation (7) would take exponential time in
n. Indeed this is the approach proposed in [Bhat & Leyton-Brown, 2004].

Can we do better? We observe that the players’ mixed strategies are inde-
pendent, i.e. o is a product probability distribution o(s) = [[, oi(s;). Also,
each player affects the configuration D independently. This structure allows us
to use dynamic programming (DP) to efficiently compute the probability dis-
tribution Pr(D()|a(*)). The intuition behind our algorithm is to apply one

Algorithm 1 Computing the induced probability distribution Pr(D(:)|g(5)).
Algorithm ComputeP
Input: s;, (59
Output: P,, which is the distribution Pr(D(Si)
DS =(0,...,0)
Po[DSV] = 1.0 // Initialization: A = {D{*}
for k=1tondo
Initialize Py to be an empty trie
for all D*") from P,_; do
for all sfji) € S,E,S“) such that aks"’)(s,(:?')) >0 do
D ol
if si:si) # () then
DY (s*)) 4= 1 // Apply action s{*)
end if
if Py [D,(:'i)} does not exist yet then
PyD) = 0.0
end if
PDPY) += Py a[DP)] x o (s
end for
end for
end for
return P,

o(51)) represented as a trie.

agent’s mixed strategy at a time. In other words, we add one agent at a time
Si

to the action graph. Let Ulm)k denote the projected strategy profile of agents
{1,...,k}. Denote by Al(fi) the set of configurations induced by actions of
agents {1, ..., k}. Similarly denote Dl(fi) € A,(fi). Denote by Py the probability
distribution on Afi) induced by af_i_)k, and by Py[D] the probability of configu-
ration D. At iteration k of the algorithm, we compute P from P,_; and o,(fi).
After iteration n, the algorithm stops and returns P,,. The pseudocode of our
DP algorithm is shown as Algorithm 1.

Each D,(:") is represented as a sequence of integers, so Py is a mapping from
sequences of integers to real numbers. We need a data structure to manipulate
such probability distributions over configurations (sequences of integers) which
permits quick lookup, insertion and enumeration. An efficient data structure for
this purpose is a trie [Fredkin, 1962]. Tries are commonly used in text processing
to store strings of characters, e.g. as dictionaries for spell checkers. Here we
use tries to store strings of integers rather than characters. Both lookup and
insertion complexity is linear in |v(s;)|. To achieve efficient enumeration of all
elements of a trie, we store the elements in a list, in the order of their insertions.

10

3.3 Proof of correctness

It is straightforward to see that Algorithm 1 is computing the following recur-
rence in iteration k:

VDy €AY, PiDy] = > Po1[Dy—1] x o) (s5°))
Di_1,50 D) (Dy,_q,501)=D,,
(8)
where D(Si)(Dk,l, s](:i')) denotes the configuration resulting from applying &’s
projected action S;:i) to the configuration Dy_, € Af:i).

On the other hand, the probability distribution on Al(:"') induced by oy, is
by definition

k
Pr(Dglor. k) = > [1oi6si) 9)

51,6 DG (s1.. 1)=Dy J=1

Now we want to prove that our DP algorithm is indeed computing the cor-
rect probability distribution, i.e. Py[Dg] as defined by Equation 8 is equal to
Pr(Dgloy.. k)-

Theorem 2. For all k, and for all Dy, € A;:i), Py[Dy] = Pr(Dgloy. k).

Proof by induction on k. Base case: Applying Equation (8) for k = 1, it is
straightforward to verify that P;[D;] = Pr(Di|oy) for all D; € Agsi).

Inductive case: Now assume Py,_1[Dy_1] = Pr(Dy_1|oy 1) forall Dy_; €
AP

11

Pk[Dk} = Z Pkfl[Dkfl] X Jk(Sk) (].0)
Dk—lask :
D(Dy—1,5k) = Dy

k-1
= Z ok (sK) X Z Haj(sj)

Dy _1, sk : s1...k—1:D(s1...k—1)=Dr—1 J=1
D(Dg-1, k) = Di
(11)

k
)) [(12)

Dy—1,8:D(Dg—1,5k)=Dr \51..k-1:D(51.. . k—1)=Dj 1 j=1

k

DY D b ss=04 1 w=Deal - [04(si) (13)

S1..k—1 Sk Dp_1 Jj=1

k
S D Ypwiss=pa) Lpeeson=pa) | - [[oi(s) (14
j=1

S1...k \Dr—1

k
= > 1@y o=py [[i(s5) (15)
j=1

> [1ei(s5) (16)

s1..k:D(s1...1)=Dy j=1
= Pr(Dylo1..x) (17)

Note that from (13) to (14) we use the fact that given an action profile s1. 51,

there is a unique configuration Dy € A,(:_)l such that Dy_; = D) (s 4 1).
O

3.4 Complexity

Our algorithm for computing V; (o_;) consists of first computing the projected
strategies using (5), then following Algorithm 1, and finally doing the weighted
sum given in Equation (6). Let A9 (g_;) denote the set of configurations
over v(s;) that have positive probability of occurring under the mixed strategy
(8iy0—;). In other words, this is the number of terms we need to add together
when doing the weighted sum in Equation (6). When o_; has full support,
AL (g_;) = ABi) Since looking up an entry in a trie takes time linear
in the size of the key, which is |v(s;)| in our case, the complexity of doing the
weighted sum in Equation (6) is O(|v(s;)||A®) (a_;)]).

Algorithm 1 requires n iterations; in iteration k, we look at all possible

(s

combinations of D)1 and s,isi), and in each case do a trie look-up which costs

12

O(|v(s5)]). Since [SP)| < |v(si)] + 1, and [ALY| < |AG#)|, the complexity
of Algorithm 1 is O(n|v(s;)|?|AG#Y(0_;)|). This dominates the complexity

s
—i

of summing up (6). Adding the cost of computing o we get the overall
complexity of expected payoff computation O(n|S| 4 n|v(s;)|?|ACH) (o_4)]).

Since |AGH) (0_;)]) < |AGHD | < |AGD| and |AGH)]| is the number of payoff
values stored in payoff function u®*, this means that expected payoffs can be
computed in polynomial time with respect to the size of the AGG. Furthermore,
our algorithm is able to exploit strategies with small supports which lead to a
small |[AG#9) (g_;)]). Since |A(%9)] is bounded by %7 this implies that
if the in-degree of the graph is bounded by a constant, then the complexity of
computing expected payoffs is O(n|S| + n*1).

Theorem 3. Given an AGG representation of a game, i’s expected payoff
Vfi (i) can be computed in polynomial time with respect to the representa-
tion size, and if the in-degree of the action graph is bounded by a constant, the
complexity is polynomial in n.

3.5 Discussion

Of course it is not necessary to apply the agents’ mixed strategies in the order
1...n. In fact, we can apply the strategies in any order. Although the number
of configurations |A(5:)(o_;)| remains the same, the ordering does affect the
intermediate configurations A;:"). We can use the following heuristic to try to
minimize the number of intermediate configurations: sort the players by the
sizes of their projected action sets, in ascending order. This would reduce the
amount of work we do in earlier iterations of Algorithm 1, but does not change
the overall complexity of our algorithm.

In fact, we do not even have to apply one agent’s strategy at a time. We
could partition the set of players into sub-groups, compute the distributions
induced by each of these sub-groups, then combine these distributions together.
Algorithm 1 can be straightforwardly extended to deal with such distributions
instead of mixed strategies of single agents. In Section 5.1 we apply this ap-
proach to compute Jacobians efficiently.

3.5.1 Relation to Polynomial Multiplication

We observe that the problem of computing Pr(D|a(si)) can be expressed as one
of multiplication of multivariate polynomials. For each action node s € v(s;),
let x4 be a variable corresponding to s. Then consider the following expression:

H cr,(:i)(@) + Z ok (sk)xs, (18)
k=1

SRLESKNY(s;)

This is a multiplication of n multivariate polynomials, each corresponding to one
player’s projected mixed strategy. This expression expands to a sum of |A(Si”)|

13

terms. Each term can be identified by the tuple of exponents of the = variables,
(D(s),D(s'),...). In other words, the set of terms corresponds to the set of
configurations A(5:9) The coefficient of the term with exponents D € A9 g

> (f[0(3“(855”))

s D) (s¢))=p \k=1
which is exactly Pr(D|c(*)) by Equation (7)! So the whole expression (18)

evaluates to
> Pr(Dle))] P
DeAGi) sev(s;y)

Thus the problem of computing Pr(D|o(*?)) is equivalent to the problem of com-
puting the coefficients in (18). Our DP algorithm corresponds to the strategy
of multiplying one polynomial at a time, i.e. at iteration k& we multiply the
polynomial corresponding to player k’s strategy with the expanded polynomial
of 1...(k — 1) that we computed in the previous iteration.

4 AGG with Function Nodes

There are games with certain kinds of context-specific independence structures
that AGGs are not able to exploit. In Example 4 we show a class of games with
one such kind of structure. Our solution is to extend the AGG representation
by introducing function nodes, which allows us to exploit a much wider variety
of structures.

4.1 Motivating Example: Coffee Shop

Example 4. In the Coffee Shop Game there are n players; each player is plan-
ning to open a new coffee shop in an downtown area, but has to decide on the
location. The downtown area is represented by a r X ¢ grid. FEach player can
choose to open the shop at any of the B = rc blocks, or decide not to enter the
market. Conditioned on player i choosing some location s, her utility depends
on:

e the number of players that chose the same block,
e the number of players that chose any of the surrounding blocks, and
e the number of players that chose any other location.

The normal form representation of this game has size n|S|™ = n(B + 1)".
Since there are no strict independencies in the utility function, the size of the
graphical game representation would be similar. Let us now represent the game
as an AGG. We observe that if agent ¢ chooses an action s corresponding to
one of the B locations, then her payoff is affected by the configuration over
all B locations. Hence, v(s) would consist of B action nodes corresponding to

14

the B locations. The action graph has in-degree Z = B. Since the action sets

completely overlap, the representation size is O(|S||A®)|) = O(B%). If

we hold B constant, this becomes O(BnB), which is exponentially more compact
than the normal form and the graphical game representation. If we instead hold
n constant, the size of the representation is O(B™), which is only slightly better
than the normal form and graphical game representations.

Intuitively, the AGG representation is only able to exploit the anonymity
structure in this game. However, this game’s payoff function does have context-
specific structure. Observe that u® depends only on three quantities: the num-
ber of players that chose the same block, the number of players who chose
surrounding blocks, and the number of players who chose other locations. In
other words, u® can be written as a function g of only 3 integers: us(D(s)) =
9(D(5),> gcs D(8), > grcgr D(s”)) where S’ is the set of actions that sur-
rounds s and S” the set of actions corresponding to the other locations. Because
the AGG representation is not able to exploit this context-specific information,
utility values are duplicated in the representation.

4.2 Function Nodes

In the above example we showed a kind of context-specific independence struc-
ture that AGGs cannot exploit. It is easy to think of similar examples, where
u® could be written as a function of a small number of intermediate param-
eters. Omne example is a “parity game” where u® depends only on whether
> sen(s) P(s) is even or odd. Thus u*® would have just two distinct values, but
the AGG representation would have to specify a value for every configuration
D),

This kind of structure can be exploited within the AGG framework by in-
troducing function nodes to the action graph G. Now G’s vertices consist of
both the set of action nodes S and the set of function nodes P. We require
that no function node p € P can be in any player’s action set, i.e. SN P = {},
so the total number of nodes in G is |S| + |P|. Each node in G can have ac-
tion nodes and/or function nodes as neighbors. For each p € P, we introduce
a function f, : A®) — IN, where D® € A®) denotes configurations over p’s
neighbors. The configurations D are extended over the entire set of nodes, by
defining D(p) = f,(D™). Intuitively, D(p) are the intermediate parameters
that players’ utilities depend on.

To ensure that the AGG is meaningful, the graph G restricted to nodes in P
is required to be a directed acyclic graph (DAG). Furthermore it is required that
every p € P has at least one neighbor (i.e. incoming edge). These conditions
ensure that D(s) for all s and D(p) for all p are well-defined. To ensure that
every p € P is “useful”, we also require that p has at least one out-going edge.
As before, for each action node s we define a utility function u® : A®®) — R.
We call this extended representation (N, S, P,v,{fp}pep,u) an Action Graph
Game with Function Nodes (AGGFN).

15

Figure 5: A 5 x 6 Coffee Shop Game: Left: the AGG representation without
function nodes (looking at only the neighborhood of the a node s). Middle: we
introduce two function nodes. Right: s now has only 3 incoming edges.

4.3 Representation Size

Given an AGGFN, we can construct an equivalent AGG with the same players
N and actions S and equivalent utility functions, but represented without any
function nodes. We put an edge from s’ to s in the AGG if either there is an edge
from s’ to s in the AGGFN, or there is a path from s’ to s through a chain of
function nodes. The number of utilities stored in an AGGFN is no greater than
the number of utilities in the equivalent AGG without function nodes. We can
show this by following similar arguments as before, establishing a many-to-one
mapping from utilities in the AGG representation to utilities in the AGGFN. On
the other hand, AGGFNs have to represent the functions f,, which can either be
implemented using elementary operations, or represented as mappings similar
to u®. We could construct examples with huge number of function nodes, such
that the space complexity of representing {fj,},cp would be greater than that
of the utility functions. In other words, blindly adding function nodes will not
make the representation more compact. We want to add function nodes only
when they represent meaningful intermediate parameters and hence reduce the
number of incoming edges on action nodes.

Consider our coffee shop example. For each action node s corresponding to
a location, we introduce function nodes p/ and p//. Let v(p}) consist of actions
surrounding s, and v(p!) consist of actions for the other locations. Then we
modify v(s) so that it has 3 nodes: v(s) = {s,p}, "}, as shown in Figure 5. For
all function nodes p € P, we define f,(D®)) = 2 mev(p) P(m). Now each D®)

is a configuration over only 3 nodes. Since f, is a summation operator, |A(*)|

is the number of compositions of n — 1 into 4 nonnegative integers, (S’fj,)é, =

n(n+1)(n+2)/6 = O(n?). We must therefore store O(Bn?) utility values. This

is significantly more compact than the AGG representation without function

nodes, which had a representation size of O(B %).

Remark 1. One property of the AGG representation as defined in Section 2.1
is that utility function w® is shared by all players that have s in their action
sets. What if we want to represent games with agent-specific utility functions,
where utilities depend not only on s and D), but also on the identity of the
player playing s? We could split s into individual player’s actions s;, s; etc., so

16

that each action node has its own utility function, however the resulting AGG
would not be able to take advantage of the fact that the actions s;, s; affect the
other players’ utilities in the same way. Using function nodes, we are able to
compactly represent this kind of structure. We again split s into separate action
nodes s;, s, but also introduce a function node p with s;, s; as its neighbors,
and define f, to be the summation operator f,(D®)) = > mevp P(m). This
way the function node p with its configuration D(p) acts as if s; and s; had
been merged into one node. Action nodes could then include p instead of both
s; and s; as a neighbor. This way agents can have different utility functions,
without sacrificing representational compactness.

4.4 Computing with AGGFNs

Our expected-payoff algorithm cannot be directly applied to AGGFNs with
arbitrary f,,. First of all, projection of strategies does not work directly, because
a player j playing an action s; ¢ v(s) could still affect D) via function nodes.
Furthermore, our DP algorithm for computing the probabilities does not work
because for an arbitrary function node p € v(s), each player would not be
guaranteed to affect D(p) independently. Therefore in the worst case we need
to convert the AGGFN to an AGG without function nodes in order to apply
our algorithm. This means that we are not always able to translate the extra
compactness of AGGFNs over AGGs into more efficient computation.

Definition 1. An AGGFN is contribution-independent (CI) if

e Forallp € P, v(p) C S, i.e. the neighbors of function nodes are action
nodes.

o There exists a commutative and associative operator x, and for each node
s € S an integer ws, such that given an action profile s, for all p € P,

D(p) = *iEN:siEV(p) Ws, -

Note that this definition entails that D(p) can be written as a function of
D) by collecting terms: D(p) = f,(DP)) = *Sel,(p)(*f:(i) Ws).

The coffee shop game is an example of a contribution-independent AGGFN,
with the summation operator serving as *, and ws; = 1 for all s. For the parity
game mentioned earlier, * is instead addition mod 2. If we are modeling an
auction, and want D(p) to represent the amount of the winning bid, we would
let ws be the bid amount corresponding to action s, and * be the max operator.

For contribution-independent AGGFNs, it is the case that for all function
nodes p, each player’s strategy affects D(p) independently. This fact allows us
to adapt our algorithm to efficiently compute the expected payoff V (o_;). For
simplicity we present the algorithm for the case where we have one operator *
for all p € P, but our approach can be directly applied to games with different
operators associated with different function nodes, and likewise with a different
set of w; for each operator.

17

We define the contribution of action s to node m € S U P, denoted Cs(m),

aslifm=s, 0if me S\ {s}, and *m/ey(m)(*g;(lm/) ws) if m € P. Then it is

easy to verify that given an action profile s, D(s) = >, Cj,(s) for all s € S
and D(p) = *7_, Cs, (p) for all p € P.

Given that player ¢ played s;, we define the projected contribution of ac-
tion s, denoted C{*", as the tuple (Cs(m))mew(s;)- Note that different actions
may have identical projected contributions. Player j’s mixed strategy o; in-
duces a probability distribution over j’s projected contributions, Pr(C*!)|o;) =
Esj; 0D =gt 0j(s;). Now we can operate entirely using the probabilities on
projected contributions instead of the mixed strategy probabilities. This is
analogous to the projection of o; to aﬁsi) in our algorithm for AGGs without
function nodes.

Algorithm 1 for computing the distribution Pr(D(*9)|o) can be straightfor-
wardly adopted to work with contribution-independent AGGFNs: whenever we

apply player &’s contribution C*") to D,(;_‘)l, the resulting configuration D,gsi) is
computed componentwise as follows: D,(Csi)(m) = Cézi)(m) —I—Dl(;;)l(m) ifmeS,
and D,(:'i)(m) — ¢ (m) >i<D,(:_‘)1 (m) if m € P. Following similar complex-
ity analysis, if an AGGFN is contribution-independent, expected payoffs can be
computed in polynomial time with respect to the representation size. Applied to
the coffee shop example, since |A(®)| = O(n?), our algorithm takes O(n|S|+n*)
time, which grows linearly in |S].

Remark 2. We note that similar ideas are emloyed in the variable elimination al-
gorithms that exploit causal independence in Bayes nets [Zhang & Poole, 1996].
Bayes nets are compact representations of probability distributions that graph-
ically represent independencies between random variables. A Bayes net is a
DAG where nodes represent random variables and edges represent direct prob-
abilistic dependence between random variables. Efficient algorithms have been
developed to compute conditional probabilities in Bayes nets, such as clique
tree propagation and variable elimination. Causal independence refers to the
situation where a node’s parents (which may represent causes) affect the node
independently. The conditional probabilities of the node can be defined using
a binary operator that can be applied to values from each of the parent vari-
ables. Zhang and Poole [1996] proposed a variable elimination algorithm that
exploits causal independence by factoring the conditional probability distribu-
tion into factors corresponding to the causes. The way factors are combined
together is similar in spirit to our DP algorithm that combines the independent
contributions of the players’ strategies to the configuration D(5i).

This parallel between Bayes nets and action graphs are not surprising. In
AGGFNs, we are trying to compute the probability distribution over configu-
rations Pr(D®9)|o(*)). If we see each node m in the action graph as a ran-
dom variable D(m), this is the joint distribution of variables v(s;). However,
whereas edges in Bayes nets represent probabilistic dependence, edges in the
action graph have different semantics depending on the target. Incoming edges
of action nodes specifies the neighborhood v(s) that we are interested in com-

18

puting the probabilities of. Incoming edges of a function node represents the
deterministic dependence between the random variable of the function node
D(p) and its parents. The only probabilistic components of action graphs are
the players’ mixed strategies. These are probability distributions of random
variables associated with players, but are not explicitly represented in the ac-
tion graph. Whereas AGGFNs in general are not DAGs, given an action s, we
can construct an induced Bayes net consisting of v(s), the neighbors of function
nodes in v(s), and the neighbors of any new function nodes included, and so
on until no more function nodes are included, and finally augmented with n
nodes representing the players’ mixed strategies. Whereas for CI AGGFNs, the
Bayes net formulation has a simple structure and does not yield a more efficient
algorithm compared to Algorithm 1, this formulation could be useful for non-
CI AGGFNs with a complex network of function nodes, as standard Bayes net
algorithms can be used to exploit the independencies in the induced Bayes net.

5 Applications

5.1 Application: Computing Payoff Jacobian

A game’s payoff Jacobian under a mixed strategy o is defined as a ", |S;| by
>, |Si| matrix with entries defined as follows:

V(o) _
60’2(Z) = ‘/\sl,S/() (19)

= (si,D(s4,8:,8)) Pr(s|o) (20)

w \

Here whenever we use an overbar in our notation, it is shorthand for the sub-
script —{4,'}. For example, § = s_; ;3. The rows of the matrix are indexed by
i and s; while the columns are indexed by i’ and sy. Given entry VV! ls (),
we call s; its primary action node, and s; its secondary action node.

One of the main reasons we are interested in computing Jacobians is that it
is the computational bottleneck in Govindan and Wilson’s continuation method
for finding mixed-strategy Nash equilibria in multi-player games [Govindan &
Wilson, 2003]. The Govindan-Wilson algorithm starts by perturbing the payoffs
to obtain a game with a known equilibrium. It then follows a path that is
guaranteed to give us one or more equilibria of the unperturbed game. In each
step, we need to compute the payoff Jacobian under the current mixed strategy
in order to get the direction of the path; we then take a small step along the
path and repeat.

Efficient computation of the payoff Jacobian is important for more than
this continuation method. For example, the iterated polymatrix approximation
(IPA) method [Govindan & Wilson, 2004] has the same computational problem
at its core. At each step the IPA method constructs a polymatrix game that is a
linearization of the current game with respect to the mixed strategy profile, the

19

Lemke-Howson algorithm is used to solve this game, and the result updates the
mixed strategy profile used in the next iteration. Though theoretically it offers
no convergence guarantee, IPA is typically much faster than the continuation
method. Also, it is often used to give the continuation method a quick start.
The payoff Jacobian may also be useful to multiagent reinforcement learning
algorithms that perform policy search.

Equation (20) shows that the VVS”;,(E) element of the Jacobian can be
interpreted as the expected utility of ageﬁt ¢ when she takes action s;, agent ¢/
takes action s;/, and all other agents use mixed strategies according to . So
a straightforward approach is to use our DP algorithm to compute each entry
of the Jacobian. However, the Jacobian matrix has certain extra structure that
allows us to achieve further speedup.

First, we observe that some entries of the Jacobian are identical. If two
entries have same primary action node s, then they are expected payoffs on
the same utility function u?®, i.e. they have the same value if their induced
probability distributions over A(®) are the same. We need to consider two cases:

1. Suppose the two entries come from the same row of the Jacobian, say
player i’s action s;. There are two sub-cases to consider:

(a) Suppose the columns of the two entries belong to the same player j,

but different actions s; and s}. If s§.si) = s’§si), i.e. s; and s} both
project to the same projected action in s;’s projected action graph,
then VV/, = V\/:i’fsz_.

(b) Suppose the columuns of the entries correspond to actions of different
players. We observe that for all j and s; such that U(Si)(sg-si)) =1,

VVi, (@) = Vi (0-i). As a special case, if S](-Si) = {0}, i.e. agent
j does not affect ’s payoff when ¢ plays s;, then for all s; € 5;,
VV;’,JSJ (E) = Vs'l, (O——i)'

2. If s, and s; correspond to the same action node s (but owned by agents

¢ and j respectively), thus sharing the same payoff function «®, then
VVS”SJ = VVg]lS Furthermore, if there exist s; € S;,s} € S; such

that s,*) = s;(s), then VV;;?S; = VVSJJ_’;;.

Even if the entries are not equal, we can exploit the similarity of the pro-
jected strategy profiles (and thus the similarity of the induced distributions)
between entries, and re-use intermediate results when computing the induced
distributions of different entries. Since computing the induced probability dis-
tributions is the bottleneck of our expected payoff algorithm, this provides sig-
nificant speedup.

First we observe that if we fix the row (4, s;) and the column’s player j, then
o is the same for all secondary actions s; € S;. We can compute the probability
distribution Pr(D,,_1|s;,a*), then for all s; € S;, we just need to apply the
action s; to get the induced probability distribution for the entry VV.J

Sis85°

20

Now suppose we fix the row (7, s;). For two column players j and j’, their
corresponding strategy profiles o_y; ;3 and o_y; ;1 are very similar, in fact they
are identical in n—3 of the n—2 components. For AGGs without function nodes,
we can exploit this similarity by computing the distribution Pr(D,,_1 |in")), then
for each j # i, we “undo” j’s mixed strategy to get the distribution induced by
0_{i,j}- Recall from Section 3.5.1 that the distributions are coefficients of the
multiplication of certain polynomials. So we can undo j’s strategy by computing
the long division of the polynomial for o_; by the polynomial for o;.

This method does not work for contribution-independent AGGFNs, because
in general a player’s contribution to the configurations are not reversible, i.e.
given Pr(Dn_1|ag?')) and o, it is not always possible to undo the contribu-
tions of ;. Instead, we can efficiently compute the distributions by recursively
bisecting the set of players in to sub-groups, computing probability distribu-
tions induced by the strategies of these sub-groups and combining them. For
example, suppose n = 9 and i = 9, so o_; = g1..5. We need to compute the
distributions induced by o_(1 93,...,0_(g 9}, respectively. Now we bisect o_;
into 01,4 and o05..g. Suppose we have computed the distributions induced by
o1...4 as well as 0234, 0134, 0124, 0123, and similarly for the other group of 5...8.
Then we can compute Pr(-\a(fﬁ’g}) by combining Pr(~|a§§2) and Pr(~|o§‘;i7)8),

compute Pr(-|U£SE;79}) by combining Pr(-|a§§il)) and Pr(~|aé2i7)8), etc. We have
reduced the problem into two smaller problems over the sub-groups 1...4 and
5...8, which can then be solved recursively by further bisecting the sub-groups.
This method saves the re-computation of sub-groups of strategies when com-
puting the induced distributions for each row of the Jacobian, and it works with
any contribution-independent AGGFNs because it does not use long division to
undo strategies.

6 Experiments

We implemented the AGG representation and our algorithm for computing ex-
pected payoffs and payoff Jacobians in C++. We ran several experiments to
compare the performance of our implementation against the (heavily optimized)
GameTracer implementation [Blum et al., 2002] which performs the same com-
putation for a normal form representation. We used the Coffee Shop game (with
randomly-chosen payoff values) as a benchmark. We varied both the number of
players and the number of actions.

6.1 Representation Size

For each game instance we counted the number of payoff values that need to be
stored in each representation. Since for both normal form and AGG, the size
of the representation is dominated by the number of payoff values stored, the
number of payoff values is a good indication of the size of the representation.
We first looked at Coffee Shop games with 5 x 5 blocks, with varying number

21

100000000 . 100000000 .
T 10000000 | —— AGG 10000000 - -
5 1000000 | A -m-NF 3 1000000 A L =
£ 100000 5’ S 100000 1
(7] 1%}
«» 10000 - @ 10000 A
= 1000 - ° 1000, o e—e——r
o >
2 100 s 100 ——AGG
o 10 - 10 1 -m-NFE

1 L e e N 1 T T T T T T T

3 45 6 7 8 9 1011 12 13 14 15 16 3 4 5 6 7 8 9 10
number of players number of rows

Figure 6: Comparing Representation Sizes of the Coffee Shop Game (log-scale).
Left: 5 x 5 grid with 3 to 16 players. Right: 4-player r x 5 grid with r varying
from 3 to 10.

of players. Figure 6 has a log-scale plot of the number of payoff values in each
representation versus the number of players. The normal form representation
grew exponentially with respect to the number of players, and quickly becomes
impractical for large number of players. The size of the AGG representation
grew polynomially with respect to n.

We then fixed the number of players at 4, and varied the number of blocks.
For ease of comparison we fixed the number of colums at 5, and only changed
the number of rows. Figure 6 has a log-scale plot of the number of payoff values
versus the number of rows. The size of the AGG representation grew linearly
with the number of rows, whereas the size of the normal form representation
grew like a higher-order polynomial. This was consistent with our theoretical
prediction that AGGFNs store O(|S|n?) payoff values for Coffee Shop games
while normal form representations store n|S|™ payoff values.

6.2 Expected Payoff Computation

Second, we tested the performance of our dynamic programming algorithm
against GameTracer’s normal form based algorithm for computing expected
payoffs, on Coffee Shop games of different sizes. For each game instance, we
generated 1000 random strategy profiles with full support, and measured the
CPU (user) time spent computing the expected payoffs under these strategy
profiles. We fixed the size of blocks at 5 x 5 and varied the number of players.
Figure 7 shows plots of the results. For very small games the normal form based
algorithm is faster due to its smaller bookkeeping overhead; as the number of
players grows larger, our AGGFN-based algorithm’s running time grows poly-
nomially, while the normal form based algorithm scales exponentially. For more
than five players, we were not able to store the normal form representation in
memory.

Next, we fixed the number of players at 4 and number of columns at 5, and
varied the number of rows. Our algorithm’s running time grew roughly linearly
in the number of rows, while the normal form based algorithm grew like a higher-

22

v 120 2 60
e 100 " ——AGG < 504 ——AGG -
ST -=-NF 3 -=-NF N
g 804 ! 9 40 R
£ 604 . £ 304 "
© ! @ -
E 40 ! E 204 .
z : 5 10 4 e
4 S B

2 ® 2 e
S o i 5} T

345678 910111213141516 3 4 5 6 7 8 9 10

number of players number of rows

Figure 7: Running times for payoff computation in the Coffee Shop Game. Left:
5 x b grid with 3 to 16 players. Right: 4-player r x 5 grid with r varying from
3 to 10.

order polynomial. This was consistent with our theoretical prediction that our
algorithm take O(n|S|+n?) time for this class of games while normal-form based
algorithms take O(]S|"~1) time.

Last, we considered strategy profiles having partial support. While ensuring
that each player’s support included at least one action, we generated strategy
profiles with each action included in the support with probability 0.4. Game-
Tracer took about 60% of its full-support running times to compute expected
payoffs in this domain, while our algorithm required about 20% of its full-
support running times.

6.3 Computing Payoff Jacobians

We have also run similar experiments on computing payoff Jacobians. As dis-
cussed in Section 5.1, the entries of a Jacobian can be formulated as expected
payoffs, so a Jacobian can be computed by doing an expected payoff computa-
tion for each of its entry. In Section 5.1 we discussed methods that exploits the
structure of the Jacobian to further speedup the computation. GameTracer’s
normal-form based implementation also exploits the structure of the Jacobian
by re-using partial results of expected-payoff computations. When comparing
our AGG-based Jacobian algorithm as described in Section 5.1 against Game-
Tracer’s implementation, the results are very similar to the above results for
computing expected payoffs, i.e. our implementation scales polynomially in n
while GameTracer scales exponentially in n. We instead focus on the question of
how much speedup does the methods in Section 5.1 provide, by comparing our
algorithm in Section 5.1 against the algorithm that computes expected payoffs
(using our AGG-based algorithm described in Section 3) for each of the Jaco-
bian’s entries. The results are shown in Figure 8. Our algorithm is about 50
times faster. This confirms that the methods discussed in Seciton 5.1 provide
significant speedup for computing payoff Jacobians.

23

2]

T 10000 |- AGG Jacobian g 1000 -|-=~AGG Jacobian

§ 1000 - —*— exp. payoff § 100 e payoff

o)

c 100 - e 10 -

] 10 4)

: : 17 ./.,l——l"'*H

=] 1 5

2 0.1 T T T T T T T % 01 T T T T T T T

° 3 456 7 8 910 34567 80910
number of players number of rows

Figure 8: Running times for Jacobian computation in the Coffee Shop Game.
Left: 5 x 5 grid with 3 to 10 players. Right: 4-player r x 5 grid with r varying
from 3 to 10.

6.4 Finding Nash Equilibria using the Govindan-Wilson
algorithm

Govindan and Wilson’s algorithm [Govindan & Wilson, 2003] is one of the most
competitive algorithms for finding Nash equilibria for multi-player games. The
computational bottleneck of the algorithm is repeated computation of payoff
Jacobians as defined in Section 5.1. Now we show experimentally that the
speedup we achieved for computing Jacobians using the AGG representation
leads to a speedup in the Govidan-Wilson algorithm.

We compared two versions of the Govindan-Wilson algorithm: one is the
implementation in GameTracer, where the Jacobian computation is based on
the normal form representation; the other is identical to the GameTracer im-
plementation, except that the Jacobians are computed using our algorithm for
the AGG representation. Both techniques compute the Jacobians exactly. As
a result, given an initial perturbation to the original game, these two imple-
mentations would follow the same path and return exactly the same answers.
So the difference in their running times would be due to the different speeds of
computing Jacobians.

Again, we tested the two algorithms on Coffee Shop games of varying sizes:
first we fixed the size of blocks at 4 x 4 and varied the number of players; then
we fixed the number of players at 4 and number of columns at 4, and varied
the number of rows. For each game instance, we randomly generated 10 initial
perturbation vectors, and for each initial perturbation we run the two versions
of the Govindan-Wilson algorithm. Since the running time of the Govindan-
Wilson algorithm highly depends on the initial perturbation, it is not meaningful
to compare the running times with different initial perturbations. Instead, we
look at the ratio of running times between the normal form implementation
and the AGG implementation. Thus a ratio greater than 1 means the AGG
implementation spent less time than the normal form implementation. We
plotted the results in Figure 9. The results confirmed our theoretical prediction
that as the size of the games grows (either in the number of players or in the

24

@
8

w
8
°

e e » »
5 & 8 bl
~ © - @

o

—

ratio of NF time vs. AGG time

ratio of NF time vs. AGG time

e
3

5 55

»

3 6 7

4 5 8
number of rows

9 10

3.‘5 ; 4‘5
number of players

Figure 9: Ratios of Running times for the Govindan-Wilson algorithm in the
Coffee Shop Game. Left: 4 x 4 grid with 3 to 5 players. Right: 4-player r x 4
grid with r varying from 3 to 9. The error bars indicate standard deviation
over 10 random initial perturbations. The constant lines at 1.0 indicating equal
running times are also shown.

number of actions), the speedup of the AGG implementation compared to the
normal from implementation increases.

7 Conclusions

We presented a polynomial-time algorithm for computing expected payoffs in
action-graph games. For AGGs with bounded in-degree, our algorithm achieves
an exponential speed-up compared to normal-form based algorithms and Bhat
and Leyton-Brown [2004]’s algorithm. We also extended the AGG represen-
tation by introducing function nodes, which allows us to compactly represent
a wider range of structured utility functions. We showed that if an AGGFN
is contribution-independent, expected payoffs can be computed in polynomial
time.

Our current and future research includes two directions: Computationally,
we plan to apply our expected payoff algorithm to speed up other game-theoretic
computations, such as computing best responses and the simplicial subdivision
algorithm for finding Nash equilibria. Also, as a direct corollary of our Theorem
3 and Papadimitriou [2005]’s result, correlated equilibria can be computed in
time polynomial in the size of the AGG.

Representationally, we plan to extend the AGG framework to represent more
types of structure such as additivity of payoffs. In particular, we intend to study
is Bayesian games. In a Bayesian game, players are uncertain about which game
(i.e. payoff function) they are playing, and each receives certain private informa-
tion about the underlying game. Bayesian games are heavily used in economics
for modeling competitive scenarios involving information asymmetries, e.g. for
modeling auctions and other kinds of markets. A Bayesian game can be seen
as a compact representation, since it is much more compact than its induced

25

normal form. We plan to use the AGG framework to represent not only the
structure inherent in Bayesian games, but also context-specific independence
structures such as the ones we have considered here.

References

Bhat, N., & Leyton-Brown, K. (2004). Computing Nash equilibria of action-
graph games. UAL

Blum, B., Shelton, C., & Koller, D. (2002). Gametracer.
http://dags.stanford.edu/Games/gametracer.html.

Fredkin, E. (1962). Trie memory. Comm. ACM, 3, 490-499.

Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash
equilibria. Journal of Economic Theory.

Govindan, S.; & Wilson, R. (2004). Computing Nash equilibria by iterated
polymatrix approximation. Journal of Economic Dynamics and Control, 28,
1229-1241.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory.
UAL

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing
and solving games. [JCAL

LaMura, P. (2000). Game networks. UAL
Leyton-Brown, K., & Tennenholtz, M. (2003). Local-effect games. IJCAL

Papadimitriou, C. (2005). Computing correlated equilibria in multiplayer games.
STOC. Available at http://www.cs.berkeley.edu/~christos/papers/cor.ps.

Porter, R., Nudelman, E., & Shoham, Y. (2004). Simple search methods for
finding a Nash equilibrium. Proc. AAAI (pp. 664-669).

Rosenthal, R. (1973). A class of games possessing pure-strategy Nash equilibria.
Int. J. Game Theory, 2, 65—67.

van der Laan, G., Talman, A., & van der Heyden, L. (1987). Simplicial variable
dimension algorithms for solving the nonlinear complementarity problem on

a product of unit simplices using a general labelling. Mathematics of OR,
12(3), 377-397.

Zhang, N., & Poole, D. (1996). Exploiting causal independence in Bayesian
network inference. JAIR, 5, 301-328.

26

