
CPS 296.2 - Computational Game Theory and Mechanism Design

Homework 2 (due 10/12)

Note the rules for assignments on the course web page. Show all your work,
but circle your final answer. Contact Vince (conitzer@cs.duke.edu) with any
questions.

1. (Properties of voting rules.)
Alice likes to analyze the outcomes of elections; specifically, she is interested

in the different outcomes that different voting rules produce on the same votes.
To do so, she executes many different rules on the same set of votes, a painstak-
ing process. She likes knowing about properties of voting rules that ease her
task. For example, she likes to know which voting rules satisfy the Condorcet
criterion, so that if there is a Condorcet winner, she immediately knows that
that will be the winner for those rules, without having to go through the trouble
of executing each rule individually.

Recently, Alice has become interested in the phenomenon of votes “cancelling
out.” Let us say that a set1 S of votes cancels out with respect to voting rule
r if for every set T of votes, the winner2 that r produces for T is the same
as the winner that r produces for S ∪ T . For example, the set of votes {a Â
b Â c, b Â a Â c, c Â a Â b} cancels out with respect to the plurality rule:
each candidate is ranked first once in this set of votes, so it has no net effect on
the outcome of the election. The same set does not cancel out with respect to
Borda, though, because from these votes, a gets 4 points, b gets 3, and c gets 2,
which may affect the outcome of the election. Alice likes to know when a set of
votes cancels out with respect to a rule, so that she can just ignore these votes,
easing her computation of the winner.

Define a pair of opposite votes to be a pair of votes with completely opposite
rankings of the candidates, i.e. the votes can be written as c1 Â c2 Â . . . Â cm

and cm Â cm−1 Â . . . Â c1. Let us say that a voting rule r satisfies the
Opposites Cancel Out (OCO) criterion if every pair of opposite votes cancels
out with respect to r.

1a. (12 points) From among the (reasonable3) voting rules discussed in
class, give 3 voting rules that satisfy the OCO criterion, and 3 that do not (and
say which ones are which!).

1Technically, a multiset, since the same vote may occur multiple times.
2... or set of winners if there are ties.
3E.g. not dictatorial rules, rules that always choose the same winner, or randomized rules.

Also, approval cannot be one of the rules because it is not based on rankings. If you use Cup,

Cup only satisfies a criterion if it satisfies it for every way of pairing the candidates.
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Define a cycle of votes to be a set of votes that can be written as c1 Â c2 Â
. . . Â cm, c2 Â c3 Â . . . cm Â c1, c3 Â c4 Â . . . Â cm Â c1 Â c2, . . . , cm Â c1 Â
c2 Â . . . Â cm−1. Let us say that a voting rule r satisfies the Cycles Cancel Out
(CCO) criterion if every cycle cancels out with respect to r.

1b. (12 points) From among the (reasonable) voting rules discussed in
class, give 3 voting rules that satisfy the CCO criterion, and 3 that do not.

Define a pair of opposite cycles of votes to be a cycle, plus all the opposite
votes of votes in that cycle (note that these opposite votes themselves constitute
a cycle). Let us say that a voting rule r satisfies the Opposite Cycles Cancel
Out (OCCO) criterion if every pair of opposite cycles cancels out with respect
to r.

1c. (12 points) From among the (reasonable) voting rules discussed in
class, give 5 voting rules that satisfy the OCCO criterion, and 1 that does not.

1d. (14 points) Criterion C1 is stronger than criterion C2 if every rule that
satisfies C1 also satisfies C2. Two criteria are incomparable if neither is stronger
than the other. For every pair of criteria among OCO, CCO, and OCCO, say
which one is stronger (or that they are incomparable).

2. (A multi-unit auction with externalities.)
We are running a multi-unit auction for badminton rackets in the town

Externa, where nobody owns one yet and we are the only supplier. Of course,
being the only person to own a badminton racket is no fun; bidders care about
which other bidders win rackets as well. In such a setting, where bidders care
about what other bidders win, we say that there are externalities. Let us assume
that each agent is awarded at most one racket, and that shuttlecocks and nets
are freely available. In the most general bidding language for this setting, each
bidder would specify, for every subset of the agents, what her value would be
if exactly the agents in that subset won rackets. This is impractical because
there are exponentially many subsets. Instead, we will consider more restricted
bidding languages.

Let us suppose that it is commonly known which agents live close enough to
each other that they could play badminton together. This can be represented
as a graph, which has an edge between two agents if and only if they live close
enough to each other to play together.

Alice

Bob

Carol Daniel

Eva

Frank

Figure 1: Externa’s proximity graph.

In the first bidding language, every agent i submits a single value vi. The
semantics of this are as follows. If the agent does not win a racket, her utility
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is 0 regardless of who else wins a racket. If she does win a racket, her value is
v times the number of her neighbors that also win a racket.

Suppose we receive the following bids:

Alice

Bob

Carol Daniel

Eva

Frank

4

4

3

5

5

3

Figure 2: Graph with bids. The number next to an agent is that agent’s bid.

Suppose we have three rackets for sale. One valid (but not optimal) allo-
cation would be to give rackets to Carol, Daniel, and Eva. Carol would get a
(reported) utility of 3, Daniel would get 6 (2·3, because two of Daniel’s neighbors
have rackets), and Eva 5, for a total of 14.

2a. (12 points) Give the optimal allocation, as well as the VCG (Clarke)
payment for each agent.

2b. (13 points) In general (general graphs and bids), is the problem of
finding the optimal allocation solvable in polynomial time, or NP-hard? (Hint:
think about the Clique problem.)

One year has passed, and we have returned to Externa. Everyone’s rackets
have broken (we are not in the business of selling high-quality rackets here)
and they need new ones. However, the people in the town were not entirely
happy with our previous system. Specifically, it turned out that each agent
only ever played with (at most) a single other agent, so that multiplying the
value by the number of neighbors with rackets really made no sense. Also,
agents have realized that they would receive different utilities for playing with
different agents.

In the new system, we must not only decide on who receives rackets, but
(for the agents who win rackets) we must also decide on the pairing, i.e. who
plays with whom. Each agent can be paired with at most one other agent. Each
agent i submits a value vij for every one of her neighbors j; agent i receives vij

if she is paired with j (and both win rackets), and 0 otherwise.
Suppose we receive the following bids:

Alice

Bob

Carol Daniel

Eva

Frank

4
2

2 4

2

33

1

1

2

2
3

Figure 3: Graph with bids. Each number is the value that the closer agent on
the edge has for playing with the further agent on the edge.
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Suppose we have four rackets for sale. One valid (but not optimal) outcome
would be to pair Alice and Bob, and Daniel and Eva (and give them all rackets),
for a total utility of 4 + 2 + 1 + 2 = 9.

2c. (12 points) Give the optimal outcome (pairing and allocation), as well
as the VCG (Clarke) payment for each agent.

2d. (13 points) In general (general graphs and bids), is the problem of
finding the optimal outcome solvable in polynomial time, or NP-hard? (Hint:
think about the Maximum-Weighted-Matching problem. Keep in mind that the
number of rackets is limited, though.)

4


