
28 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

two items for sale, and we auction them off individually and sequentially. One bidder may consider
the items complementary: neither item by itself would be useful to her, but together they are worth
something. This bidder may be hesitant to bid high in the first auction, for fear that another bidder
will win the second item—leaving her stuck with only the first item. This hesitancy may prevent her
from winning the first item, even if the economically efficient outcome is for her to win both items.
A likely event in this scenario is that the bidder seeks to strike a deal with the seller to buy both
items outside of the auction, thereby reverting to ad hoc negotiation and the problems it entails.

The solution, of course, is to make sure that the protocols are not deemed too restrictive by the
agents. In the example, the two items could be auctioned off simultaneously in a combinatorial
auction, allowing bids on the bundle of both items. Protocols such as combinatorial auctions that
allow the agents to express their full preferences, and that act on that information, are known as
expressive preference aggregation protocols. In recent years, billions of dollars have been saved by
applying such protocols to strategic sourcing [Sandholm et al., 2006; Sandholm, 2006].

This dissertation will not consider any ad-hoc approaches to preference aggregation. Rather,
it will focus on clear protocols that allow the agents to provide their preference information in
expressive languages. The remainder of this chapter will introduce some preference aggregation
settings, together with corresponding languages in which agents can express their preferences and
criteria according to which the outcome can be selected. We will discuss computational aspects of
these settings in later chapters. For example, Chapter 3 will discuss the computational complexity
of and algorithms for choosing the optimal outcome in these settings. Some of the results in later
chapters will not be specific to any particular setting, but the settings introduced in this chapter can
serve as example domains.

The rest of this chapter is layed out as follows. In Section 2.1, we discuss voting (or rank ag-
gregation) as an approach to preference aggregation. Here, each agent simply ranks all possible
outcomes, and the outcome is chosen based on these rankings according to some voting rule (some
example voting rules will be given). In Section 2.2, we discuss allocation of tasks and resources,
and the use of combinatorial auctions and exchanges for doing so. In Section 2.3, we introduce
a new application: letting multiple potential donors negotiate over who gives how much to which
of multiple (say, charitable) causes [Conitzer and Sandholm, 2004e]. Finally, in Section 2.4, we
study preference aggregation in settings with externalities and introduce a representation, a lan-
guage for expressing agent preferences, and criteria for choosing an optimal outcome [Conitzer and
Sandholm, 2005d].

2.1 Voting over alternatives (rank aggregation)

A very general approach to aggregating agents’ preferences over outcomes is the following: let
each agent rank all of the alternatives, and choose the winning alternative based on these rankings.
(In some settings, rather than merely producing a winning alternative, one may wish to produce
an aggregate ranking of all the alternatives.) This approach is often referred to as voting over the
alternatives, and hence, in this context, agents are referred to as voters, the rankings that they submit
as votes, and the alternatives as candidates.

For example, in a setting with three candidates a, b, c, voter 1 may vote a Â b Â c, voter 2
b Â a Â c, and voter 3 a Â c Â b. The winner (or aggregate ranking of the candidates) depends on

2.1. VOTING OVER ALTERNATIVES (RANK AGGREGATION) 29

which voting rule is used. Formally, letting C be the set of candidates, R(C) the set of all possible
rankings of the candidates, and n the number of voters, a voting rule is a mapping from R(C)n

to C (if one only wishes to produce a winner) or to R(C) (if one wishes to produce an aggregate
ranking). One example rule is the plurality rule, where candidates are ranked simply according to
how often they are ranked first by voters. In the example, a is ranked first twice, b once, and c never,
so that the aggregate ranking produced by the plurality rule is a Â b Â c. Under the plurality rule,
the voters effectively vote only for a single candidate (how the voter ranks the candidates below the
top candidate is irrelevant).

Rules such as plurality may leave candidates tied, and typically these ties will need to be broken
somehow (especially to choose a winning alternative). Throughout, we will make as few assump-
tions as possible on how ties are broken, but where we do make assumptions, we will make this
clear. One may also wonder if we can allow for candidates to be tied in the votes. It is typically
not difficult to extend voting rules and results to allow for this, but we will assume throughout that
rankings are total orders on the candidates, i.e. they have no ties. (Some recent work has addressed
extending voting theory to settings in which voters submit partial orders [Pini et al., 2005; Rossi et
al., 2006]; this is significantly more involved than merely allowing for ties.)

But why should one use the plurality rule? Perhaps it would be desirable to give a vote’s second-
ranked candidate some points, or even to use a rule that is not based on awarding points to the
candidates at all. We will see examples of such rules shortly. First, however, let us consider if
perhaps there exists an “ideal” rule. If there are only two candidates, it is clear what the voting rule
should do: the candidate that is ranked higher more often should win. This leads us to the following
idea: for any pair of candidates, we can see which one is ranked more often. For instance, in the
above example, a is ranked above b twice, whereas b is ranked above a only once—hence we say
that a wins the pairwise election between a and b. Similarly, a defeats c in their pairwise election,
and b defeats c. Hence, naturally, the aggregate ranking should be a Â b Â c (which agrees with the
plurality rule).

However, this line of reasoning is not always sufficient to produce a ranking (or even a winner).
Consider a modified example in which voter 1 votes a Â b Â c, voter 2 b Â c Â a, and voter 3
c Â a Â b. Now, a defeats b in their pairwise election, b defeats c, and c defeats a—that is, we have
a cycle, and our aggregate ranking cannot be consistent with the outcomes of all pairwise elections.
This is known as a Condorcet paradox, and it shows that, unfortunately, in deciding whether a
should be ranked higher than b in the aggregate ranking, we cannot simply ignore the position of c
in the rankings.

Indeed, a famous theorem by Arrow [1963] states that there is no deterministic voting rule (for
producing an aggregate ranking) that has all of the following properties:

• The rule is non-dictatorial, that is, at least two voters have the potential to affect the outcome.

• The rule is consistent with unanimity, that is, if all voters prefer a to b, then the aggregate
ranking must rank a above b as well.

• The rule satisfies independence of irrelevant alternatives, that is, which of two alternatives is
ranked higher in the aggregate ranking should be independent of how the other alternatives
are ranked in the votes.

30 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

Arrow’s theorem and the possibility of Condorcet paradoxes depend on the voters’ being unre-
stricted in how they order the candidates. One well-known restriction that makes these problems
disappear is single-peakedness of the voters’ preferences. We say that preferences are single-peaked
if there is a total order < on the candidates, and for any voter i and any three candidates a < b < c,
a Âi b ⇒ b Âi c and c Âi b ⇒ b Âi a. In words, the candidates are arranged on a spectrum
from left to right, and a voter never prefers a candidate that is further from the voter’s most pre-
ferred candidate (the voter’s “peak”) to a closer one. (Note that this definition does not compare
candidates on the left side of a voter’s peak with those on the right side in terms of closeness, that
is, the notion of “closer to the peak” only applies to pairs of candidates that are on the same side of
the peak. Also note that the order < must be the same for all voters.) If the voters’ preferences are
single-peaked, then there are no Condorcet cycles. If we order the voters by their peaks, then the
peak of the voter in the middle of this ordering (the median voter) will win all pairwise elections,
that is, it is a Condorcet winner. (This is assuming that a median voter exists, i.e. the number of
voters is odd.)

Nevertheless, in many settings the votes do not have any (apparent) structure, so that it is still
important to define voting rules for the general case. Next, we review the most common voting
rules. We will define them according to how they rank candidates; the winner is the top-ranked
candidate.

• Scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector of integers. For each vote, a candidate
receives α1 points if it is ranked first in the vote, α2 if it is ranked second, etc. Candidates are
ranked by their scores. The Borda rule is the scoring rule with ~α = 〈m − 1,m − 2, . . . , 0〉.
The plurality rule is the scoring rule with ~α = 〈1, 0, . . . , 0〉. The veto rule is the scoring rule
with ~α = 〈1, 1, . . . , 1, 0〉.

• Single transferable vote (STV). This rule proceeds through a series of m − 1 rounds. In
each round, the candidate with the lowest plurality score (that is, the fewest votes ranking it
first among the remaining candidates) is eliminated (and each of the votes for that candidate
“transfers” to the next remaining candidate in the order given in that vote). The candidates
are ranked in reverse order of elimination.

• Plurality with run-off. In this rule, a first round eliminates all candidates except the two with
the highest plurality scores. Votes are transferred to these as in the STV rule, and a second
round determines the winner from these two. Candidates are ranked according to Plurality
scores, with the exception of the top two candidates whose relative ranking is determined
according to the runoff.

• Maximin (aka. Simpson). For any two candidates a and b, let N(a, b) be the number of votes
that prefer a to b. The maximin score of a is s(a) = minb6=aN(a, b)—that is, a’s worst
performance in a pairwise election. Candidates are ranked by their scores.

• Copeland. For any two candidates a and b, let C(a, b) = 1 if N(a, b) > N(b, a), C(a, b) =
1/2 if N(a, b) = N(b, a), and C(a, b) = 0 if N(a, b) < N(b, a). The Copeland score of
candidate a is s(a) =

∑

b6=aC(a, b). Candidates are ranked by their scores.

2.1. VOTING OVER ALTERNATIVES (RANK AGGREGATION) 31

• Bucklin. For any candidate a and integer l, let B(a, l) be the number of votes that rank
candidate a among the top l candidates. For each candidate a, let l(a) be the lowest l such
that B(a, l) > n/2. Candidates are ranked inversely by l(a). As a tiebreaker, B(a, l(a)) is
used.

• Slater. The Slater rule produces a ranking that is inconsistent with the outcomes of as few
pairwise elections as possible. That is, for a given ranking of the candidates, each pair of
candidates a, b such that a is ranked higher than b, but b defeats a in their pairwise election,
counts as an inconsistency, and a ranking is a Slater ranking if it minimizes the number of
inconsistencies.

• Kemeny. This rule produces a ranking that minimizes the number of times that the ranking is
inconsistent with a vote on the ranking of two candidates. That is, for a given ranking r of
the candidates, each combination of a pair of candidates a, b and a vote ra such that r ranks
a higher than b, but ri ranks b higher than a, counts as an inconsistency, and a ranking is a
Kemeny ranking if it minimizes the number of inconsistencies.

We define one additional rule, the cup rule, which runs a single-elimination tournament to decide
the winning candidate. This rule does not produce a full aggregate ranking of the candidates, and
additionally requires a schedule for matching up the remaining candidates.

• Cup. This rule is defined by a balanced1 binary tree T with one leaf per candidate, and a
schedule, that is, an assignment of candidates to leaves (each leaf gets one candidate). Each
non-leaf node is assigned the winner of the pairwise election of the node’s children; the
candidate assigned to the root wins. The regular cup rule assumes that the assignment of
candidates to leaves is known by the voters before they vote. In the randomized cup rule, the
assignment of candidates to leaves is chosen uniformly at random after the voters have voted.

Sometimes votes are weighted; a vote of weight K counts as K votes of weight 1. Different
possible interpretations can be given to weights. They may represent the decision power of a given
agent in a voting setting where not all agents are considered equal. The weight may correspond to
the size of the community that the voter represents (such as the size of the state). Or, when agents
vote in partisan groups (e.g., in parliament), the weights may correspond to the size of the group
(each group acts as one voter).

We will sometimes use the term “voting protocol” rather than “voting rule”; the meaning is
roughly the same, except the word “protocol” is intended to encompass not only the mapping from
rankings to outcomes (i.e., aggregate rankings or winners), but also procedural aspects such as the
manner in which the voters report their ranking (e.g., whether all voters submit their rankings at the
same time or not).

The general applicability of voting makes it an appealing approach to preference aggregation in
unstructured domains. However, in more structured settings, this generality becomes a weakness,
as using a voting approach does not exploit the structure of the domain. For example, many settings
allow payments to be made by or to the agents. In principle, we can model these payments as part
of the outcome, so that voter 1’s vote may be something like:

1“Balanced” here means that the difference in depth between two leaves can be at most one.

32 CHAPTER 2. EXPRESSIVE PREFERENCE AGGREGATION SETTINGS

“alternative a is chosen, voter 1 pays $10, voter 2 pays $5” Â “alternative b is chosen, voter 1 pays
$0, voter 2 pays $3” Â “alternative a is chosen, voter 1 pays $10, voter 2 pays $6” Â . . .

Needless to say, this approach is extremely cumbersome (in principle the votes have infinite
length!), and it does not exploit any of the knowledge that we have (or assumptions that we are
willing to make) about how agents feel about payments. For example, we know that agents prefer
smaller payments to larger ones; we may know that they do not care about other agents’ payments;
we may know that each dollar is as valuable as the next to an agent; etc.

Another drawback is that the voting approach does not allow us to make statements about how
strong or weak agents’ preferences over outcomes are, and hence how they feel about distributions
over outcomes. For example, suppose an agent prefers a to b to c. Which does the agent prefer: b,
or a coin flip between a and c? It is impossible to tell from the information given—we do not even
know whether the agent’s preference of a over b is stronger than that of b over c. Again, in principle,
voters can vote over distributions over outcomes, e.g.:

P (a) = .4, P (b) = .3, P (c) = .3 Â P (a) = .5, P (b) = .2, P (c) = .3 Â P (a) = .5, P (b) =
.3, P (c) = .2 Â . . .

but again this is impractical (if not impossible). Again, we can make very reasonable assumptions
about agents’ preferences over distributions: for example, Dutch book theorems [Mas-Colell et
al., 1995] suggest that agents will maximize their expected utility, because otherwise they will be
susceptible to accepting a sequence of bets that is guaranteed to leave them worse off.

In the remainder of this chapter, we focus on utility-based approaches; we will return to voting
(specifically, computing aggregate rankings using the Slater rule) in the next chapter, Section 3.1.

2.2 Allocation of tasks and resources

Some of the most common domains in which multiple agents’ preferences must be aggregated in-
volve the allocation of resources or tasks to the agents. I will restrict my attention to settings in
which payments can be made, that is, agents can pay for resources allocated to them and tasks
performed for them, or be compensated for resources they supply and tasks they perform. (Not all
research on resource/task allocation makes the assumption that payments are possible: for exam-
ple, Lipton et al. [2004] and Bouveret and Lang [2005] consider the problem of finding envy-free
allocatons, that is, allocations under which no agent would prefer the share of another agent to its
own.)

We will refer to distinct resources as items; the performance of a task can be thought of as an
item as well, so from now on we can, without loss of generality, focus strictly on the allocation and
provision of items.

Earlier, we discussed combinatorial auctions as a method for allocating a fixed set of n available
items, I . Here, agent (or bidder) i will have a valuation function vi : 2I → R, mapping each bundle
of items that could be allocated to that bidder to a real value. This is making the assumption of no
externalities: given that a bidder does not win an item, that bidder does not care which (if any) other
bidder receives the item instead. This is usually realistic, but not always: for example, a country
may prefer certain other countries not to obtain certain weapons. We will discuss externalities in the

