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Abstract

We examine the effect of false-name bids on combinatorial auction protocols. False-

name bids are bids submitted by a single bidder using multiple identifiers such as

multiple e-mail addresses. The obtained results are summarized as follows: 1) The

Vickrey-Clarke-Groves (VCG) mechanism, which is strategy-proof and Pareto effi-

cient when there exists no false-name bids, is not false-name-proof, 2) There exists

no false-name-proof combinatorial auction protocol that satisfies Pareto efficiency,

3) One sufficient condition where the VCG mechanism is false-name-proof is iden-

tified, i.e., the concavity of a surplus function over bidders.
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1 Introduction

Internet auctions have become an especially popular part of Electronic Com-

merce (EC). Various theoretical and practical studies on Internet auctions have

already been conducted (Monderer and Tenenholtz, 2000a; Monderer and Ten-

nenholtz, 2000b; Sandholm, 1996; Wurman et al., 1998). Among these studies,

those on combinatorial auctions have lately attracted considerable attention

(Fujishima et al., 1999; Klemperer, 1999; Rothkopf et al., 1998; Sandholm,

1999). Although conventional auctions sell a single good at a time, combina-

torial auctions sell multiple goods with interdependent values simultaneously

and allow the bidders to bid on any combination of goods. In a combinatorial

auction, a bidder can express complementary/substitutable preferences over

multiple goods. By taking into account such preferences, economic efficiency

can be enhanced.

Although the Internet provides an excellent infrastructure for executing com-

binatorial auctions, we must consider the possibility of new types of cheating.

For example, a bidder may try to profit from submitting false bids under ficti-

tious names such as multiple e-mail addresses. Such an action is very difficult

to detect since identifying each participant on the Internet is virtually impos-

sible. We call a bid made under a fictitious name a false-name bid. Also, we

call a protocol is false-name-proof if truth-telling without using false-name

bids is a dominant strategy for each bidder.

The problems resulting from collusion have been discussed by many researchers

(McAfee and McMillan, 1992; Milgrom and Weber, 1982; McAfee and McMil-

lan, 1987; Milgrom, 2000). Compared with collusion, a false-name bid is easier
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to execute on the Internet since getting another identifier such as an e-mail

address is cheap. We can consider false-name bids as a very restricted subclass

of collusion.

A concept called group-strategy-proof is proposed to study another restricted

subclass of general collusion (Muller and Satterthwaite, 1985; Moulin and

Shenker, 1996). As discussed in Section 5, group-strategy-proof and false-

name-proof are independent concepts, i.e., a group-strategy-proof protocol is

not necessarily false-name-proof, and vice versa.

In this paper, we analyze the effects of false-name bids on combinatorial auc-

tion protocols. The obtained results can be summarized as follows.

• The Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971;

Groves, 1973), which is strategy-proof and Pareto efficient if there exists no

false-name bid, is not false-name-proof.

• There exists no false-name-proof combinatorial auction protocol that satis-

fies Pareto efficiency.

• We identify one sufficient condition where the VCG mechanism is false-

name-proof, i.e., a surplus function is concave over bidders.

In the rest of this paper, we first develop the model of a combinatorial auc-

tion in which false-name bids are possible (Section 2). Next, we examine the

effect of false-name bids in combinatorial auctions (Section 3). Then, we show

a sufficient condition where the VCG mechanism is false-name-proof (Sec-

tion 4). Finally, we discuss the difference between false-name-proof protocols

and group-strategy-proof protocols (Section 5).

4



2 Formalization

In this section, we formalize a combinatorial auction protocol in which false-

name bids are possible. Our model is based on that presented in (Monderer

and Tenenholtz, 2000a), but our model is modified to handle false-name bids.

Assume there are a set of bidders N = {1, 2, . . . , n}. We assume agent 0 is

an auctioneer, who is willing to sell a set of goods A = {a1, a2, . . . , al}. Each

bidder i has his/her preferences over the subsets of A. Formally, we model

this by supposing that bidder i privately observes a type θi, which is drawn

from a set Θ. We assume a quasi-linear, private value model with no allocative

externality, defined as follows.

Definition 1 The utility of bidder i, when i obtains a subset of goods B ⊆ A

and a monetary transfer ti, is represented as v(B, θi) + ti.

We assume evaluation value v is normalized by v(∅, θi) = 0. Also, we assume

free disposal, i.e., v(B′, θi) ≥ v(B, θi) for all B ⊆ B′. Furthermore, for auc-

tioneer 0, for any subset of goods B, we assume v(B, θ0) = 0 holds.

To formalize false-name bids, we introduce a set of identifiers that bidders can

use.

Definition 2 There exists a set of identifiers M = {id1, id2, . . . , idm}. Fur-

thermore, there exists a mapping function φ, where φ : N → 2M \ {∅}. 2M

is a power set of M . φ(i) represents a set of identifiers a bidder i can use.

We assume for all i, |φ(i)| ≥ 1 and
⋃

i φ(i) = M hold. Also, we assume for

all i �= j, φ(i) ∩ φ(j) = ∅ holds, i.e., the identifiers of different bidders are

mutually exclusive.
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We assume φ(i) is also the private information of bidder i. Therefore, the set

of signals are represented as T = Θ× (2M \ ∅), where the signal of bidder i is

(θi, φ(i)) ∈ T .

In other words, a bidder can submit multiple bids pretending to be multiple

bidders, but a bidder cannot impersonate another real, existing bidder. Also,

the auctioneer 0 has no knowledge of φ and each bidder i only knows φ(i) and

does not know φ(j) for j �= i.

Next, we define a combinatorial auction protocol. For simplicity, we restrict

our attention to almost anonymous mechanisms, in which obtained results

are invariant under permutation of identifiers except for the cases of ties. We

describe the condition that an almost anonymous mechanism must satisfy for

the cases of ties later. Also, we restrict our attention to auction protocols, in

which the set of messages for each identifier is Θ ∪ {0}, where 0 is a special

symbol used for “non-participation”. The fact that this restriction does not

harm the generality of our results does not follow directly form the revelation

principle, because the signal of a bidder is a pair (θi, φ(i)), and not just θi. We

comment on this usage of the revelation principle at the end of this section.

Definition 3 A combinatorial auction protocol is defined by Γ = (k(·), t(·)).
We call k(·) allocation function and t(·) transfer function. Let us represent

a profile of types, each of which is declared under each identifier as θ =

(θid1 , θid2 , . . . , θidm), where θidi
∈ Θ ∪ {0}. 0 is a special type declaration used

when a bidder is not willing to participate in the auction.

k(θ) = (k0(θ), kid1(θ), . . . , kidm(θ)), where kidi
(θ) ⊆ A.

t(θ) = (t0(θ), tid1(θ), . . . , tidm(θ)), where t0(θ), tidi
(θ) ∈ R. R denotes the set of
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real numbers. Here, t0(θ) represents the revenue of the auctioneer and −tidi
(θ)

represents the payment of idi.

We assume the following constraints are satisfied.

Allocation feasibility constraints: For all i �= j, kidi
(θ)∩ kidj

(θ) = ∅, kidi
(θ)∩

k0(θ) = ∅, and kidj
(θ) ∩ k0(θ) = ∅. Also,

⋃m
i=1 kidi

(θ) ∪ k0(θ) = A.

Budget constraint: t0(θ) = −∑
1≤i≤m tidi

(θ).

Non-participation constraint: For all θ, if θidi
= 0, then kidi

(θ) = ∅ and

tidi
(θ) = 0.

Also, in an almost anonymous mechanism, we assume for the cases of ties, the

following condition is satisfied.

For a declared type profile θ = (θid1 , θid2 , . . . , θidm), if θidi
= θidj

,

then v(kidi
(θ), θidi

) + tidi
(θ) = v(kidj

(θ), θidj
) + tidj

(θ) holds.

We define the fact that an allocation function is Pareto (or ex post) efficient

as follows.

Definition 4 An allocation function k(·) is Pareto efficient if for all k =

(k0, kid1 , . . . , kidm), which satisfies the allocation feasibility constraints,

∑
1≤i≤m v(kidi

(θ), θidi
) ≥ ∑

1≤i≤m v(kidi
, θidi

) holds. Let us denote a Pareto ef-

ficient allocation function as k∗(·).

A strategy of a bidder is defined as follows.

Definition 5 A strategy s of bidder i is a function s : T → (Θ ∪ {0})M such

that s(θi, φ(i)) ∈ (Θ ∪ {0})|φ(i)| for every (θi, φ(i)) ∈ T . That is, s(θi, φ(i)) =

(θi,1, . . . , θi,mi
), where θi,j ∈ Θ ∪ {0} and |φ(i)| = mi.

We denote a profile of types for identifiers M \ φ(i) as θ∼i. Also, we denote a
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profile of types for φ(i) declared by bidder i as (θi,1, . . . , θi,mi
). Also, we denote

a combination of these two type profiles as ((θi,1, . . . , θi,mi
), θ∼i).

When a declared type profile is θ = ((θi,1, . . . , θi,mi
), θ∼i), the utility of bidder i

is represented as v(ski(θ), θi) + sti(θ), where ski(θ) = ∪idj∈φ(i)kidj
(θ), sti(θ) =

∑
idj∈φ(i) tidj

(θ).

We define a (weakly) dominant strategy of bidder i as follows.

Definition 6 For bidder i, a strategy s∗(θi, φ(i)) = (s∗i,1, . . . , s
∗
i,mi

) is a domi-

nant strategy if for all type profiles θ∼i, (θi,1, . . . , θi,mi
),

where θ = ((s∗i,1, . . . , s
∗
i,mi

), θ∼i), θ′ = ((θi,1, . . . , θi,mi
), θ∼i), v(ski(θ), θi) +

sti(θ) ≥ v(ski(θ
′), θi) + sti(θ

′) holds.

In a traditional setting where there exists no false-name bid, we say a direct

revelation mechanism is truthfully implementable (in dominant strategies) or

strategy-proof, when truthfully declaring his/her type is a dominant strategy

for each bidder (Mas-Colell et al., 1995). On the other hand, in the problem set-

ting in this paper, each bidder can submit multiple types in a mechanism. We

define a mechanism/protocol is false-name-proof (or truthfully implementable

in dominant strategies with the possibility of false-name bids) as follows.

Definition 7 We say a mechanism is false-name-proof when for all bidder i,

s∗(θi, φ(i)) = (θi, 0, . . . , 0) is a dominant strategy.

Since we assume a protocol/mechanism is almost anonymous, we can assume

each bidder uses only the first identifier without loss of generality.

Bidder i can declare (0, . . . , 0), i.e., not participating in the auction. In this

case, the utility of i becomes 0. Therefore, our definition that a mechanism is
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false-name-proof includes individual rationality (or participation constraint),

which requires that the utility of each bidder must be non-negative.

In a traditional setting where there exists no false-name bid, the revelation

principle guarantees that we can restrict our attention only to strategy-proof

mechanisms without loss of generality. In the rest of this section, we discuss the

meaning of the revelation principle when false-name declarations are possible.

When false-name bids are possible, the private information of each bidder is

not only his/her type that determines the evaluation values of goods, but also

a set of his/her identifiers φ(i). Therefore, in general, a direct revelation mech-

anism needs to ask not only a type, but also a set of identifiers a participant

can use.

Formally, in a general mechanism, a social choice x is chosen from a set of al-

ternatives X. We can assume a social choice function takes a set of pairs, where

each pair consists of a type of each participant and a set of identifiers he/she

can use and return a selected social choice, i.e., f({(θ1, φ(1)), . . . , (θn, φ(n))}) =

x.

It is rather straightforward to show that the revelation principle holds for such

a social choice function. The revelation principle holds in a general mechanism,

which is not necessarily almost anonymous.

Also, if we assume a mechanism is almost anonymous, there is no difference

among identifiers, thus only the number of identifiers mi = |φ(i)| affects the so-

cial choice. Furthermore, if we assume the social choice function f is invariant

for the number of identifiers a participant can use, we can omit the declara-

tions of identifiers. In this case, the revelation principle holds for a mechanism
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introduced in this section, which asks only a type of each participant and does

not ask a set of identifiers.

3 The Effect of False-name Bids in the Vickrey-Clarke-Groves Mech-

anism

In this section, we first examine the effect of false-name bids in the Vickrey-

Clarke-Groves (VCG) mechanism.

The Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971;

Groves, 1973), which is also called the Generalized Vickrey Auction Protocol

(Varian, 1995), is defined as follows.

Definition 8 In the VCG mechanism, k∗(·) is used for determining the allo-

cation, and the transfer function is determined as follows.

tidi
(θ) = [

∑

j �=i

v(k∗(θ), θidj
)] − [

∑

j �=i

v(k∗
−idi

(θ), θidj
)]

where k∗
−idi

(θ) is an allocation k that maximizes
∑

j �=i v(kidj
, θidj

).

In short, in the VCG mechanism, each bidder is required to pay the decreased

amount of the surplus, i.e., the sum of the gross utilities, of other bidders

caused by his/her participation.

We describe how the VCG mechanism works in the following example.

Example 1 Three bidders (bidder 1, bidder 2, and bidder 3) are bidding for

two goods, a1 and a2. The evaluation values of a bidder are represented as a

triplet: (the evaluation value for good a1 only, the evaluation value for good a2
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only, the evaluation value for both a1 and a2).

bidder 1: (7, 0, 7)

bidder 2: (0, 0, 12)

bidder 3: (0, 7, 7)

We assume there are four identifiers. Bidder 1 can use two identifiers, while

bidders 2 and 3 can use only one identifier. If each bidder declares his/her

true type using a single identifier, bidder 1 and bidder 3 will get good a1 and

good a2, respectively. The payment of bidder 1 is calculated as 12 − 7 = 5,

since the sum of the gross utilities of other bidders when bidder 1 participates

is 7, while the sum of the gross utilities of other bidders when bidder 1 does

not participate would be 12. Bidder 3’s payment is also equal to 5.

If there are no false-name bids, the VCG mechanism is strategy-proof, i.e., for

each bidder, truthfully revealing his/her type is a dominant strategy. Now, we

show an example where the VCG mechanism is not false-name-proof.

Example 2 Assume the same setting as the previous example, but the eval-

uation values of bidder 1 are different and bidder 3 is not interested in the

auction.

bidder 1: (7, 7, 14)

bidder 2: (0, 0, 12)

bidder 3: (0, 0, 0)

In this case, if bidder 1 uses a single identifier, he/she can obtain both goods,

and the payment is equal to 12. However, bidder 1 can create the situation ba-

sically identical to Example 1 by using another identifier and splitting his/her

bid. In this case, the payment becomes 5+5=10. Therefore, for bidder 1, using
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a false-name bid is profitable.

Furthermore, the following non-existence theorem holds.

Proposition 1 In combinatorial auctions, there exists no false-name-proof

auction protocol that satisfies Pareto efficiency.

Proof: We are going to prove the proposition by presenting a generic counter

example assuming there exists a false-name-proof, Pareto efficient protocol.

Let us assume that there are two goods, a1 and a2, and three bidders denoted

by bidder 1, bidder 2, and bidder 3. The evaluation values of a bidder are

represented as a triplet: (the evaluation value for good a1 only, the evaluation

value for good a2 only, the evaluation value for both a1 and a2). We assume

there are four identifiers. Bidder 1 can use two identifiers, while bidders 2 and

3 can use only one identifier.

• bidder 1: (b, 0, b)

• bidder 2: (0, 0, b + c)

• bidder 3: (0, b, b)

Let us assume b > c. According to Pareto efficiency, bidder 1 gets good a1 and

bidder 3 gets good a2. Let pb denote the payment of bidder 1.

If bidder 1 declares his/her evaluation value for good a1 as b′ = c + ε, the

allocation does not change. Let pb′ denote bidder 1’s payment in this situation.

The inequality pb′ ≤ b′ should hold, otherwise, if bidder 1’s true evaluation

value for good a1 were b′, truth-telling would not be a dominant strategy since

bidder 1 is not willing to participate if pb′ > b′. Furthermore, since truth-
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telling is a dominant strategy, pb ≤ pb′ should hold. These assumptions lead

to pb ≤ c + ε. The condition for bidder 3’s payment is identical to that for

bidder 1’s payment.

Next, we assume another situation where bidder 3 is not interested in the

auction.

• bidder 1: (b, b, 2b)

• bidder 2: (0, 0, b + c)

• bidder 3: (0, 0, 0)

According to Pareto efficiency, both goods go to bidder 1. Let us denote the

payment of bidder 1, p2b. If bidder 1 uses a false-name bid and splits his/her

bid, the same result as in the previous case can be obtained. Since the protocol

is false-name-proof, the following inequality must hold, otherwise, bidder 1

can profit by using another identifier and splitting his/her bid: p2b ≤ 2× pb ≤
2c + 2ε.

On the other hand, let us consider the following case.

• bidder 1: (d, d, 2d)

• bidder 2: (0, 0, b + c)

• bidder 3: (0, 0, 0)

Let us assume c + ε < d < b, and b + c > 2d. According to Pareto efficiency,

both goods go to bidder 2. Consequently, the utility of bidder 1 is 0. However,

if bidder 1 declares his/her evaluation values as (b, b, 2b) instead of (d, d, 2d),

both goods go to bidder 1 and the payment is p2b ≤ 2c + 2ε, which is smaller

than 2d, i.e., bidder 1’s true evaluation value of these two goods. Therefore,

bidder 1 can increase the utility by overstating his/her true evaluation values.
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Thus, in combinatorial auctions, there exists no false-name-proof auction pro-

tocol that satisfies Pareto efficiency. �

Please note that Proposition 1 holds in more general settings. The proof relies

on the model defined in Definition 2.1, but it does not require the assumption

of free disposal. Also, the proof does not rely on the fact that the mechanism

is almost anonymous.

4 Sufficient Condition where the VCG Mechanism is False-name-

Proof

To derive a sufficient condition where the VCG mechanism is false-name-proof,

we introduce the following function.

Definition 9 For a set of bidders and their types Y = {(y1, θy1), (y2, θy2), . . .}
and a set of goods B ⊆ A, we define surplus function U as follows. Let us

denote KB,Y as a set of feasible allocations of B to Y .

U(B, Y ) = max
k∈KB,Y

∑

(yi,θyi)∈Y

v(kyi
, θyi

)

In particular, for a set of all goods A, we abbreviate U(A, Y ) as UA(Y ).

Definition 10 We say UA(·) is concave over bidders if for all possible sets of

bidders Y, Z, and W , where Y ⊆ Z, the following condition holds.

UA(Z ∪ W ) − UA(Z) ≤ UA(Y ∪ W ) − UA(Y )

Proposition 2 The VCG mechanism is false-name-proof if the following con-

ditions are satisfied.
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• Θ satisfies that UA(·) is concave for every subset of bidders with types in Θ.

• Each declared type is in Θ ∪ {0}.

The proof of this proposition is relegated to Appendix A.

The second condition, i.e., the declared (not necessarily true) type also must

be in Θ ∪ {0}, is required by the following reason. Even if bidders’ true types

satisfy the concavity condition, if bidder i declares a false type so that the

concavity condition is violated (although doing so is not rational for bidder

i), it is possible that using false-name bids is profitable for another bidder j.

First, we show one sufficient condition where the concavity of UA is satisfied,

i.e., the gross substitutes condition. The definition of this condition is as follows

(Gul and Stacchetti, 1999; Kelso and Crawford, 1982).

Definition 11 Given a price vector p = (pa1 , . . . , pal
), we denote

Di(p) = {B ⊂ A : v(B, θi) −
∑

aj∈B

paj
≥ v(C, θi) −

∑

aj∈C

paj
, ∀C ⊂ A}.

Di(p) represents the collection of bundles that maximize the net utility of bidder

i under price vector p. Then, we say that the gross substitutes condition is

satisfied, if for any two price vectors p and p′ such that p′ ≥ p, p′aj
= paj

, and

aj ∈ B ∈ Di(p), then there exists B′ ∈ Di(p
′) such that aj ∈ B′.

In short, the gross substitutes condition states that if good aj is demanded

with price vector p, it is still demanded if the price of aj remains the same,

while the prices of some other goods increase. The key property that makes the

gross substitutes condition so convenient is that, in an auction that satisfies the

gross substitutes condition, Walrasian equilibria exist (Kelso and Crawford,

1982).
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One special case where the gross substitutes condition holds is a multi-unit

auction, in which multiple units of an identical good are auctioned and the

marginal utility of each unit is constant or diminishes.

Instead of showing directly the fact that the gross substitutes condition implies

the concavity, we introduce another sufficient condition called submodularity.

We define U is submodular for a set of bidders as follows.

Definition 12 We say U is submodular for a set of bidders X, if the following

condition is satisfied for all sets B ⊆ A and C ⊆ A.

U(B, X) + U(C, X) ≥ U(B ∪ C, X) + U(B ∩ C, X)

The following proposition holds.

Proposition 3 If U is submodular for all set of bidders X ⊆ N , then UA is

concave.

Proof: Let us choose three mutually exclusive subsets of bidders Y, Z ′, W .

Also, let us assume in an allocation that maximizes U(A, Y ∪ Z ′ ∪ W ), BY ,

BZ′, and BW are allocated to Y , Z ′, and W , respectively. Since we assume

free disposal, we can assume A = BY ∪ BZ′ ∪BW , i.e., each good is allocated

to some bidder. The following formula holds.

U(A, Y ∪ Z ′ ∪ W ) = U(BY , Y ) + U(BZ′, Z ′) + U(BW , W )

Also, the following formula holds.

U(A, Y ∪ W ) ≥ U(BY ∪ BZ′, Y ) + U(BW , W )
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The right side represents the surplus when allocating BY ∪ BZ′ to bidders Y

and BW to bidders W . This inequality holds since the left side is the surplus

of the best allocation including this particular allocation.

Similarly, the following formula holds.

U(A, Y ∪ Z ′) ≥ U(BY ∪ BW , Y ) + U(BZ′ , Z ′)

By adding these two formulae, we obtain the following formula.

U(A, Y ∪ W ) + U(A, Y ∪ Z ′) ≥
U(BY ∪ BZ′ , Y ) + U(BY ∪ BW , Y ) + U(BZ′, Z ′) + U(BW , W )

From the fact U is submodular, the following formula holds.

U(BY ∪ BZ′, Y ) + U(BY ∪ BW , Y ) ≥ U(A, Y ) + U(BY , Y )

From these formulae, we obtain the following formula.

U(A, Y ∪ W ) + U(A, Y ∪ Z ′)
≥U(A, Y ) + U(BY , Y ) + U(BZ′ , Z ′) + U(BW , W )

≥U(A, Y ) + U(A, Y ∪ Z ′ ∪ W )

By setting Z = Y ∪Z ′, we get UA(Z ∪W )−UA(Z) ≤ UA(Y ∪W )−UA(Y ). �

The condition that U is submodular can be considered as a kind of a “neces-

sary” condition for UA to be concave, i.e., the following proposition holds.

Proposition 4 If U is not submodular for a set of bidders X and a set of

goods B and C, i.e., U(B, X)+U(C, X) < U(B∪C, X)+U(B∩C, X), then we

can create a situation where for a set of bidders Y , although U is submodular

for Y , UA is not concave for X ∪ Y , where A = B ∪ C.
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The proof of this proposition is relegated to Appendix B.

Please note that the fact U is not submodular for some set of bidders X

does not necessarily mean that the concavity condition will be violated for

all situations that involve a set of bidders X. For example, if all bidders have

all-or-nothing evaluation values for goods a1 and a2, i.e., for all i, v({a1}, θi) =

v({a2}, θi) = 0, while v({a1, a2}, θi) > 0, clearly, U is not submodular, but we

can create a situation where UA is concave.

In (Gul and Stacchetti, 1999), it is shown that if evaluation value v for each

bidder satisfies gross substitutes condition and monotonicity, then the surplus

function U is submodular 1 . Therefore, if evaluation value v for each bidder

satisfies the gross substitutes condition and monotonicity, which is satisfied if

we assume free disposal, then UA is concave.

Please note that as shown in (Gul and Stacchetti, 1999), even if evaluation

value v for each bidder is submodular, it is not sufficient to guarantee that U

is submodular.

5 Discussions

A concept called group-strategy-proof is proposed to study another restricted

subclass of general collusion (Muller and Satterthwaite, 1985; Moulin and

Shenker, 1996). An auction protocol is group-strategy proof if there exists no

group of bidders that satisfies the following condition.

• By deviating from truth-telling, each member in the group obtains at least

1 This can be derived from Theorem 6 and Lemma 1 in (Gul and Stacchetti, 1999).
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the same utility compared with the case of truth-telling, while at least one

member of the group obtains a better utility compared with the case of

truth-telling.

Group-strategy-proof and false-name-proof are independent concepts. Let us

show an example where a protocol is false-name-proof, but not group-strategy-

proof.

Let us assume there are two goods a1 and a2, and two bidders 1 and 2. We

assume Θ = {θ1, θ2, θ3, θ4}, where the evaluation values for these types are

represented as follows.

• θ1: (10, 9, 18)

• θ2: (9, 10, 18)

• θ3: (10, 0, 10)

• θ4: (0, 10, 10)

Each of these types satisfies the gross substitutes condition, since when the

number of goods are two, the fact that the evaluation value is subadditive, i.e.,

v({a1}, θi)+v({a2}, θi) ≥ v({a1, a2}, θi), implies the gross substitutes condition

(Kelso and Crawford, 1982). Thus, as shown in the previous section, the VCG

mechanism is false-name-proof in this example.

However, the VCG mechanism is not group-strategy-proof. Let us assume the

type of bidder 1 is θ1 and the type of bidder 2 is θ2. By truth-telling, bidders 1

and 2 obtain a1 and a2, respectively, and each pays 8, thus the utility of each

bidder is 10 − 8 = 2. On the other hand, let us assume bidder 1 declares its

type as θ3 and bidder 2 declares its type as θ4, i.e., both bidders understate

their evaluation values of one good.
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Then, the payment becomes 0, and the utility of each bidder becomes 10−0 =

10. Thus, the utility of each bidder increases by deviating from truth-telling,

i.e., the VCG mechanism is not group-strategy-proof in this case.

Next, let us show an example where a protocol is group-strategy-proof, but

not false-name-proof. Let us assume an auction of a single-item, single-unit.

Clearly, the following protocol is group-strategy-proof.

• The auctioneer sets a reservation price p. The winner is chosen randomly

from the bidders whose declared evaluation value is larger than p. The

winner pays p.

However, this protocol is not false-name-proof. A bidder can increase his/her

chance of winning by submitting multiple bids. Please note that this protocol

does not fit the definitions used in this paper, since this is a randomized

mechanism.

6 Conclusions

We studied the effect of false-name bids on combinatorial auction protocols.

We showed a formal model of combinatorial auction protocols in which false-

name bids are possible. Then, we showed that the VCG mechanism is not

false-name-proof. Furthermore, we showed a generalized counter-example that

illustrates there exists no false-name-proof combinatorial auction protocol that

satisfies Pareto efficiency. Furthermore, we identified one sufficient condition

where the VCG mechanism is false-name-proof, i.e., the concavity of the sur-

plus function over bidders.
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A Concavity Implies False-name-proof

To prove proposition 2, we first prove the following proposition.

Proposition 5 Assume UA(·) is concave and the declared types also satisfy

the concavity condition. Then, if a bidder uses two identifiers, the bidder can

obtain more (or the same) utility by using a single identifier.

Proof: Assume bidder 1 can use two identities id1 and id2. Also, let us

assume bidder 1 declares type θid1 for id1 and type θid2 for id2.

Let us represent a type profile θ = (θid1 , θid2 , θid3 , . . . , θidm), where θid1 , θid2 ,

θid3 , . . . , θidm are declared types.

The monetary transfer bidder 1 gets is the sum of:

tid1(θ) = [
∑

j �=1

v(k∗(θ), θidj
)] − [

∑

j �=1

v(k∗
−id1

(θ), θidj
)]

and

tid2(θ) = [
∑

j �=2

v(k∗(θ), θidj
)] − [

∑

j �=2

v(k∗
−id2

(θ), θidj
)].

Now, let us assume that bidder 1 uses only a single identifier id1, and declares

his/her type as θ′id1
, so that the following condition is satisfied for all bundle

B.

v(B, θ′id1
) = v(B, θid1) + v(B, θid2)

Now, the declared type profile is θ′ = (θ′id1
, 0, θid3 , . . . , θidm).
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Obviously, k∗
id1(θ)∪k∗

id2(θ) = k∗
id1(θ

′) holds, i.e., the goods bidder 1 obtains do

not change.

The monetary transfer bidder 1 gets is as follows.

tid1(θ
′) = [

∑

j �=1

v(k∗(θ′), θidj
)] − [

∑

j �=1

v(k∗
−id1

(θ′), θidj
)].

We are going to prove that tid1(θ
′) ≥ tid1(θ)+tid2(θ), i.e., the monetary transfer

becomes larger when bidder 1 uses one identifier.

Let us denote Y = {(id3, θid3), . . . , (idm, θidm)}.

tid1(θ
′) − tid1(θ) − tid2(θ)

= [
∑

j �=1

v(k∗(θ′), θidj
)] − [

∑

j �=1

v(k∗
−id1

(θ′), θidj
)]

−([
∑

j �=1

v(k∗(θ), θidj
)] − [

∑

j �=1

v(k∗
−id1

(θ), θidj
)])

−([
∑

j �=2

v(k∗(θ), θidj
)] − [

∑

j �=2

v(k∗
−id2

(θ), θidj
)])

=UA(Y ∪ {(id1, θid1), (id2, θid2)}) − v(k∗(θ), θid1) − v(k∗(θ), θid2)

−UA(Y )

−(UA(Y ∪ {(id1, θid1), (id2, θid2)}) − v(k∗(θ), θid1))

+UA(Y ∪ {(id2, θid2)})
−(UA(Y ∪ {(id1, θid1), (id2, θid2)}) − v(k∗(θ), θid2))

+UA(Y ∪ {(id1, θid1)})
=UA(Y ∪ {(id1, θid1)}) + UA(Y ∪ {(id2, θid2)})
−UA(Y ) − UA(Y ∪ {(id1, θid1), {(id2, θid2)}).

By the concavity condition, the following formula is satisfied.

UA(Y ∪ {(id1, θid1), (id2, θid2)}) − UA(Y ∪ {(id1, θid1)})
≤UA(Y ∪ {(id2, θid2)}) − UA(Y ).

By transposition, we get,

0≤UA(Y ∪ {(id1, θid1)}) + UA(Y ∪ {(id2, θid2)})
−UA(Y ) − UA(Y ∪ {(id1, θid1), (id2, θid2)}).
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Therefore, we obtain

tid1(θ
′) ≥ tid1(θ) + tid2(θ).�

By repeatedly applying Proposition 5, we can show that if a bidder is using

more than two identities, he/she can obtain more (or the same) utility by

using a single identifier.

B Proof of Proposition 4

We assume for a set of bidders X and a set of goods B and C, where B∪C = A,

U(B, X) + U(C, X) < U(B ∪ C, X) + U(B ∩ C, X) holds.

Let us assume for each good ai ∈ A \ B, there exists bidder i �∈ X, who is

interested in only ai, and his/her evaluation value for ai is larger than U(A, X).

Let us denote a set of these bidders as W . Similarly, let us assume for each

good aj ∈ A \ C, there exists bidder j �∈ X, who is interested in only aj ,

and his/her evaluation value for aj is larger than U(A, X). Let us denote a

set of these bidders as Z. It is clear that U is submodular for W ∪ Z, since

these bidders are unit demand consumers, and satisfies the gross substitutes

condition (Gul and Stacchetti, 1999).

It is clear that in the allocation that maximizes UA(X ∪ W ∪ Z), A \ B are

allocated to bidders in W , A \C are allocated to bidders in Z, and B ∩C are

allocated to bidders in X.

Also, for X ∪W , it is clear that in the allocation that maximizes UA(X ∪W ),

A \ B are allocated to bidders in W , and B are allocated to bidders in X.
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Similarly, in the allocation that maximizes UA(X ∪Z), A \C are allocated to

bidders in Z, and C are allocated to bidders in X.

Thus, the following formulae hold.

UA(X ∪ W ) =U(A \ B, W ) + U(B, X)

UA(X ∪ Z) =U(A \ C, Z) + U(C, X)

UA(X ∪ W ∪ Z) =U(A \ B, W ) + U(A \ C, Z) + U(B ∩ C, X)

From these formulae and the assumption U(B, X)+U(C, X) < U(B∪C, X)+

U(B ∩ C, X), the following formula holds.

UA(X ∪ W ) + UA(X ∪ Z)

=U(A \ B, W ) + U(B, X) + U(A \ C, Z) + U(C, X)

=UA(X ∪ W ∪ Z) − U(B ∩ C, X) + U(B, X) + U(C, X)

<UA(X ∪ W ∪ Z) + U(B ∪ C, X) = UA(X ∪ W ∪ Z) + UA(X)

Thus, concavity is violated since UA(X ∪ W ) − UA(X) < UA(X ∪ Z ∪ W ) −
UA(X ∪ Z). �
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Rothkopf, M. H., Pekeč, A., Harstad, R. M., 1998. Computationally manage-

able combinatorial auctions. Management Science 44 (8), 1131–1147.

Sakurai, Y., Yokoo, M., Matsubara, S., 1999. A limitation of the Generalized

Vickrey Auction in Electronic Commerce: Robustness against false-name

bids. In: Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI-99). pp. 86–92.

Sandholm, T., 1996. Limitations of the Vickrey auction in computational mul-

tiagent systems. In: Proceedings of the Second International Conference on

Multiagent Systems (ICMAS-96). pp. 299–306.

Sandholm, T., 1999. An algorithm for optimal winner determination in combi-

natorial auction. In: Proceedings of the Sixteenth International Joint Con-

ference on Artificial Intelligence (IJCAI-99). pp. 542–547.

Varian, H. R., 1995. Economic mechanism design for computerized agents. In:

Proceedings of the First Usenix Workshop on Electronic Commerce.

Vickrey, W., 1961. Counter speculation, auctions, and competitive sealed ten-

ders. Journal of Finance 16, 8–37.

Wurman, P. R., Wellman, M. P., Walsh, W. E., 1998. The Michigan Internet

AuctionBot: A configurable auction server for human and software agents.

In: Proceedings of the Second International Conference on Autonomous

Agents (Agents-98). pp. 301–308.

Yokoo, M., Sakurai, Y., Matsubara, S., 2000. The effect of false-name dec-

larations in mechanism design: Towards collective decision making on the

Internet. In: Proceedings of the Twentieth International Conference on Dis-

26



tributed Computing Systems (ICDCS-2000). pp. 146–153.

27


