Clustering and the EM Algorithm

Susanna Ricco

CPS 271
25 October 2007

Material borrowed from:
Lise Getoor, Andrew Moore, Tom Dietterich, Sebastian Thrun, Rich Maclin, ... (and Ron Parr)

Unsupervised Learning is Model Learning

Goal

Produce global summary of the data.

How?

Assume data are sampled from underlying model with easily summarized properties.

Why?

- Filter out noise
- Data compression

Unsupervised Learning

Supervised Learning
Given data in the form $\langle x, y\rangle, y$ is the target to learn.

- Good news: Easy to tell if our algorithm is giving the right answer.

Unsupervised Learning
Given data in the form $\langle x\rangle$ without any explicit target.

- Bad news: How do we define "good performance"?
- Good news: We can use our results for more than just predicting y

Good Clusters

Want points in a cluster to be:

1. as similar as possible to other points in same cluster
2. as different as possible from points in another cluster

Warning:
Definition of similar and different depend on specific application.
We've already seen a lot of ways to measure distance between two data points.

Types of Clustering Algorithms

Hierarchical methods
e.g., hierarchical agglomerative clustering

Partition-based methods
e.g., K-means

Probabilistic model-based methods
e.g., learning mixture models

Spectral methods
I'm not going to talk about these

Agglomerative Hierarchical Clustering

Initialize $C_{i}=\left\{x^{(i)}\right\}$ for $i \in[1, n]$.
While more than one cluster left:

1. Let C_{i}, C_{j} be clusters that minimize $D\left(C_{i}, C_{j}\right)$
2. $C_{i}=C_{i}+C_{j}$
3. Remove C_{j} from list of clusters
4. Store current clusters

Hierarchical Clustering

Build a hierarchy of nested clusters.

Either gradually

- Merge similar clusters (agglomerative method)
- Divide loose superclusters (divisive method)

Result displayed as a dendrogram showing the sequence of merges or splits.

Measuring Distance

What is $D\left(C_{i}, C_{j}\right)$?

- Single link method:

$$
D\left(C_{i}, C_{j}\right)=\min \left\{d(x, y) \mid x \in C_{i}, y \in C_{j}\right\}
$$

- Complete link method:

$$
D\left(C_{i}, C_{j}\right)=\max \left\{d(x, y) \mid x \in C_{i}, y \in C_{j}\right\}
$$

- Average link method:

$$
D\left(C_{i}, C_{j}\right)=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{x \in C_{i}} \sum_{y \in C_{j}} d(x, y)
$$

- Centroid measure:

$$
D\left(C_{i}, C_{j}\right)=d\left(c_{i}, c_{j}\right), \text { where } c_{i} \text { and } c_{j} \text { are centroids }
$$

- Ward's measure

$$
D\left(C_{i}, C_{j}\right)=\sum_{x \in C_{i}} d(x, \bar{x})+\sum_{y \in C_{j}} d(y, \bar{y})-\sum_{u \in C_{i} \cup C_{j}} d(u, \bar{u})
$$

Result

Elman, J.L. An alternative view of the mental lexicon. Trends in Cognitive Science, 7, 301-306.

Partition-based Clustering

Pick some number of clusters K

Assign each point $x^{(i)}$ to a single cluster C_{k} so that $\operatorname{SCORE}(C, D)$ is minimized/maximized.

- (What is the score function?)

Total number of possible allocations: k^{n}

Use iterative improvement instead of intractable exhaustive search.

Divisive Hierarchical Clustering

Begin with one single cluster, split to form smaller clusters.

Can be difficult to choose potential splits:

- Monolithic methods split based on values a single variable
- Polythetic methods consider all variables together

Less popular than agglomerative methods.

The K-Means Algorithm

A popular partition-based clustering algorithm with the score function given by:

$$
\operatorname{SCORE}(C, D)=\sum_{k=1}^{K} d\left(x, c_{k}\right)
$$

where

$$
c_{k}=\frac{1}{n_{k}} \sum_{x \in C_{k}} x
$$

and

$$
d(x, y)=\|x-y\|^{2}
$$

Pseudo-code for K-Means

1. Initialize k cluster centers, c_{k}.
2. For each $x^{(i)}$, assign cluster with closest center

$$
x^{(i)} \text { assigned to } \hat{k}=\arg \min _{k} d\left(x, c_{k}\right) .
$$

3. For each cluster, recompute center:

$$
c_{k}=\frac{1}{n_{k}} \sum_{x \in C_{k}} x
$$

4. Check convergence (Have cluster centers moved?)
5. If not converged, go to 2 .

K-Means Example

Pick initial centers randomly

K-Means Example

Original unlabeled data.

K-Means Example

Assign points to nearest cluster.

K-Means Example

Recompute cluster centers.

Recompute cluster centers.

K-Means Example

Reassign points to nearest clusters.

Understanding K-Means

Time complexity per iteration?

Does algorithm terminate?

Does algorithm converge to global optimum?

K-Means Convergence

Model data as drawn from spherical Gaussians centered at cluster centers.

$$
\log P(\text { data|assignments })=\text { const }-\frac{1}{2} \sum_{k=1}^{K} \sum_{x \in C_{k}}\left(x-c_{k}\right)^{2} .
$$

- How does this change when we reassign a point?
- How does this change when we recompute the means?

Monotonic improvement + finite assignments $=$ convergence.

Variations on K-Means

What if we don't know K ?
Allow merging or splitting of clusters using heuristics.

What if means don't make sense?
Use k-mediods instead.

Demo

http://home.dei.polimi.it/matteucc/Clustering/ tutorial_html/AppletKM.html

Mixture Models

Assume data generated using the following procedure.

1. Pick one of k components according to $P\left(z_{k}\right)$.

This selects a (hidden) class label z_{k}.
2. Generate a data point by sampling from $p\left(x \mid z_{k}\right)$.

Results in probability distribution of single point

$$
p\left(x^{(i)}\right)=\sum_{k=1}^{K} P\left(z_{k}\right) p\left(x^{(i)} \mid z_{k}\right)
$$

where $p\left(x \mid z_{k}\right)$ is any distribution (gaussian, poisson, exponential, etc.).

Gaussian Mixture Model (GMM)

Most common mixture model is a Gaussian mixture model:

$$
p\left(x \mid z_{k}\right)=\mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)
$$

With this model, likelihood of data becomes

$$
p(x)=\sum_{n=1}^{N} \sum_{k=1}^{K} P\left(z_{k}\right) p\left(x^{(i)} \mid z_{k} ; \mu_{k}, \Sigma_{k}\right)
$$

Problem: Missing Labels

If we knew assignments, we could learn component models easily.

- We did this to train an LDA.

If we new the component models, we could estimate the most likely assignments easily.

- This is just classification.

LDA and GMMs

LDA

- Built models $p\left(x \mid z_{k}\right)$ and $P\left(z_{k}\right)$ using maximum likelihood given our training data.
- Used these models to compute $P\left(z_{k} \mid x\right)$ to classify new query points.

Clustering with GMMs

- Want to find $P\left(z_{k}\right)$ and $p\left(x \mid z_{k}\right)$ to learn underlying model and find clusters.
- Want to compute $P\left(z_{k} \mid x\right)$ for each point in training set to assign them to clusters.
- Can we use maximum likelihood to infer both model and assignments?
- Requires solving non-linear system of equations
- No efficient analytic solution

Solution: The Expectation Maximization (EM) Algorithm

We deal with missing labels by alternating between two steps:

1. Expectation: Fix model and estimate missing labels.
2. Maximization: Fix missing labels (or a distribution over the missing labels) and find the model that maximizes the expected log-likelihood of the data.

Simple Example

Labeled Data

Clusters correspond to "grades in class".

Model to learn:

$$
\begin{aligned}
P(A) & =\frac{1}{2} \\
P(B) & =\mu \\
P(C) & =2 \mu \\
P(D) & =\frac{1}{2}-3 \mu
\end{aligned}
$$

Training data:
a people got an A
b people got a B
c people got a C d people got a D

What is maximum likelihood estimate for μ ?

Simple Example

Hidden Labels

What if we only know that there are h "high grades" ? (Exact labels are missing.)
Now how do we find the maximum likelihood estimate of μ ?

1. Expectation:

Fix μ and infer the expected values of a and b :

$$
a=\frac{1 / 2}{1 / 2+\mu} h, \quad b=\frac{\mu}{1 / 2+\mu} h
$$

Since we know $\frac{a}{b}=\frac{1 / 2}{\mu}$ and $a+b=h$.
2. Maximization:

Fix these fractions a and b and compute the maximum likelihood μ as before:

$$
\mu_{\text {new }}=\frac{b+c}{6(b+c+d)} .
$$

3. Repeat.

Simple Example

Labeled Data
Likelihood:

$$
\begin{aligned}
P(a, b, c, d \mid \mu) & =K\left(\frac{1}{2}\right)^{a}(\mu)^{b}(2 \mu)^{c}\left(\frac{1}{2}-3 \mu\right)^{d} \\
\log P(a, b, c, d \mid \mu) & =\log K+a \log \frac{1}{2}+b \log \mu+c \log (2 \mu)+d \log \left(\frac{1}{2}-3 \mu\right) \\
\frac{\partial}{\partial \mu} \log P(a, b, c, d \mid \mu) & =\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{\frac{1}{2}-3 \mu}
\end{aligned}
$$

For MLE, set $\frac{\partial}{\partial \mu} \log P=0$ and solve for μ to get

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

Formal Setup for General EM Algorithm

Let $D=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ be n observed data vectors.

Let $Z=\left\{z^{(1)}, \ldots, z^{(n)}\right\}$ be n values of hidden variables (i.e., the cluster labels).

Log-likelihood of observed data given model:

$$
L(\theta)=\log p(D \mid \theta)=\log \sum_{Z} p(D, Z \mid \theta)
$$

Note: both θ and Z are unknown.

Fun with Jensen's Inequality

Let $Q(Z)$ be any distribution over the hidden variables:

$$
\begin{aligned}
\log P(D \mid \theta) & =\log \sum_{Z} Q(Z) \frac{p(D, Z \mid \theta)}{Q(Z)} \\
& \geq \sum_{Z} Q(Z) \log \frac{p(D, Z \mid \theta)}{Q(Z)} \\
& =\sum_{Z} Q(Z) \log p(D, Z \mid \theta)+\sum_{Z} Q(Z) \log \frac{1}{Q(Z)} \\
& =F(Q, \theta)
\end{aligned}
$$

General EM Algorithm in English

Alternate steps until model parameters don't change much:

E step:

Estimate distribution over labels given a certain fixed model.

M step:
Choose new parameters for model to maximize expected log-likelihood of observed data and hidden variables.

General EM Algorithm

Alternate between steps until convergence:
E step:

- Maximize F wrt Q, keeping θ fixed.
- Solution:

$$
Q^{k+1}=p\left(Z \mid D, \theta^{k}\right)
$$

M step:

- Maximize F wrt θ, keeping Q fixed
- Solution:

$$
\begin{aligned}
\theta^{k+1} & =\arg \max _{\theta} F\left(Q^{k+1}, \theta\right) \\
& =\arg \max _{\theta} \sum_{Z} p\left(Z \mid D, \theta^{k}\right) \log p(X, Z \mid \theta)
\end{aligned}
$$

Convergence

The EM Algorithm will converge because:

- During E step, we make $F\left(Q^{k+1}, \theta^{k}\right)=\log P\left(D \mid \theta^{k}\right)$.
- During M step, we choose θ^{k+1} that increases F.
- Recall that F is a lower bound,

$$
F\left(Q^{k+1}, \text { theta }^{k+1}\right) \leq \log P\left(D \mid \theta^{k+1}\right) .
$$

- Implies

$$
\log P\left(D \mid \theta^{k}\right) \leq \log P\left(D \mid \theta^{k+1}\right)
$$

- Implies convergence! (Why?)

Notes

Things to remember:

- Often closed form for both E and M step.
- Must specify stopping criteria.
- Complexity depends on number of iterations and time to compute E and M steps.
- May (will) converge to local optimum.

Example: EM for GMM

After second iteration

Example: EM for GMM

After fourth iteration

Example: EM for GMM

After sixth iteration

Example: EM for GMM

After convergence

Relation to K-Means

Similarities
K-Means used GMM with:

- covariance $\Sigma=I$ (fixed)
- uniform $P\left(Z_{k}\right)$ (fixed)
- unknown means

Alternated estimating labels and recomputing unknown model parameters.

Difference
Makes "hard" assignment to cluster during E step.

How to Pick K?

Do we want to pick the K that maximizes likelihood?
Other options:

- Cross-validation
- Add complexity penalty to objective function
- Prior knowledge

Summary

Clustering:

Infer assignments to hidden variables and hidden model parameters simultaneously.

EM Algorithm:
Powerful, popular, general method for doing this.
EM Applications:

- Image segmentation
- SLAM
- Estimating motion models for tracking
- Hidden Markov Models
- etc.

