Unsupervised Learning
Clustering and the EM Algorithm Supervised Learing
Given data in the form < x,y >, y is the target to learn.
. » Good news: Easy to tell if our algorithm is giving the right
Susanna Ricco answer.
CPS 271
25 October 2007 Unsupervised Learning
Given data in the form < x > without any explicit target.
» Bad news: How do we define “good performance”?
Material borrowed from: » Good news: We can use our results for more than just
Lise Getoor, Andrew Moore, Tom Dietterich, Sebastian Thrun, Rich Maclin, ... predicting y.
(and Ron Parr)
Unsupervised Learning is Model Learning Good Clusters

Want points in a cluster to be:
1. as similar as possible to other points in same cluster
2. as different as possible from points in another cluster
Goal

Produce global summary of the data. Warning:

Definition of similar and different depend on specific application.

How?
Assume data are sampled from underlying model with easily We've already seen a lot of ways to measure distance between two
summarized properties. data points.

Why? . .
» Filter out noise . . .

» Data compression




Types of Clustering Algorithms Hierarchical Clustering

Hierarchical methods Build a hierarchy of nested clusters.
e.g., hierarchical agglomerative clustering

Partition-based methods Either gradually

e.g., K-means . .
& » Merge similar clusters (agglomerative method)

Probabilistic model-based methods » Divide loose superclusters (divisive method)
e.g., learning mixture models

Spectral methods Result displayed as a dendrogram showing the sequence of merges
I'm not going to talk about these or splits.
Agglomerative Hierarchical Clustering Measuring Distance

What is D(C;, G;)?
» Single link method:
D(Gi, G) = min{d(x,y)|x € G,y € G}
Initialize C; = {x(0} for i € [1,n].

» Complete link method:
While more than one cluster left: D(Gi, G) = max{d(x,y)|x € G,y € G}
1. Let G, C; be clusters that minimize D(C;, ;) > Average link method:
2. G=G+G D(G,G) =
3. Remove C; from list of clusters <eCiyeg;
4. Store current clusters

Centroid measure:

v

D(Gi, G) = d(ci, ¢j), where ¢; and ¢; are centroids

» Ward's measure:

D(G, G) dex —l—Zdyy Zd

xe€C; yeG; ueGUG;




Result Divisive Hierarchical Clustering

Begin with one single cluster, split to form smaller clusters.

Can be difficult to choose potential splits:

» Monolithic methods split based on values a single variable

» Polythetic methods consider all variables together

NOUNS

Less popular than agglomerative methods.

Elman, J.L. An alternative view of the mental lexicon. Trends in Cognitive Science, 7, 301-306.

Partition-based Clustering The K-Means Algorithm

A popular partition-based clustering algorithm with the score

Pick some number of clusters K function given by:

. K
Assign each point x() to a single cluster C; so that SCORE(C, D) SCORE(C, D) = Z d(x, o)
is minimized /maximized. ’ prt 7
» (What is the score function?)
where 1
Ck = — Z X
. . . Ln ny
Total number of possible allocations: k x€Ck
and

_ 2
Use iterative improvement instead of intractable exhaustive search. d(x,y) = lIx —ylI*.




Pseudo-code for K-Means K-Means Example

I °
1. Initialize k cluster centers, c. Y ® X(4)
() acci . X) G °
2. For each x'"/, assign cluster with closest center X©)
[
xU) assigned to k = arg mkin d(x, ck). X®)
3. For each cluster, recompute center:
1 ([ ] [ ]
_ = X(1) X(2)
k= X
= e 2
x€Cy [ )
X(3)

4. Check convergence (Have cluster centers moved?)

5. If not converged, go to 2.

Original unlabeled data.

K-Means Example K-Means Example
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Pick initial centers randomly.

Assign points to nearest cluster.



K-Means Example
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Recompute cluster centers.

K-Means Example
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K-Means Example
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Reassign points to nearest clusters.

Recompute cluster centers.

Understanding K-Means

Time complexity per iteration?

Does algorithm terminate?

Does algorithm converge to global optimum?



K-Means Convergence

Model data as drawn from spherical Gaussians centered at cluster
centers.

K
. 1 2
log P(data|assignments) = const — 5 kE 1 GEC (x — ck)”.
=1 x K

» How does this change when we reassign a point?

» How does this change when we recompute the means?

Monotonic improvement + finite assignments = convergence.

Variations on K-Means

What if we don't know K7
Allow merging or splitting of clusters using heuristics.

What if means don’t make sense?
Use k-mediods instead.

Demo

http://home.dei.polimi.it/matteucc/Clustering/
tutorial html/AppletKM.html

Mixture Models

Assume data generated using the following procedure.

1. Pick one of k components according to P(z).
This selects a (hidden) class label z.

2. Generate a data point by sampling from p(x|z).

Results in probability distribution of single point

p(x) =" P(z)p(xz)

k=1

where p(x|zx) is any distribution (gaussian, poisson, exponential,
etc.).



Gaussian Mixture Model (GMM)

Most common mixture model is a Gaussian mixture model:

p(x|zx) = N (b, k)

With this model, likelihood of data becomes

N K
p(x) = > P(z)p(xD|zi; e, Ta)-

Problem: Missing Labels

If we knew assignments, we could learn component models easily.
» We did this to train an LDA.

If we new the component models, we could estimate the most
likely assignments easily.

» This is just classification.

LDA and GMMs
LDA

» Built models p(x|zx) and P(z) using maximum likelihood
given our training data.

> Used these models to compute P(zx|x) to classify new query
points.

Clustering with GMMs

» Want to find P(zx) and p(x|zx) to learn underlying model and
find clusters.

» Want to compute P(zk|x) for each point in training set to
assign them to clusters.

» Can we use maximum likelihood to infer both model and
assignments?
» Requires solving non-linear system of equations
> No efficient analytic solution

Solution: The Expectation Maximization (EM) Algorithm

We deal with missing labels by alternating between two steps:

1. Expectation: Fix model and estimate missing labels.

2. Maximization: Fix missing labels (or a distribution over the
missing labels) and find the model that maximizes the
expected log-likelihood of the data.



Simple Example

Labeled Data

Clusters correspond to “grades in class”.

Model to learn: Training data:
P(A) = % a people got an A
P(B) = u b people got a B
P(C) = 2u ¢ people got a C
1 d people got a D

What is maximum likelihood estimate for p?

Simple Example

Labeled Data

Likelihood:
1\? 1 d
Pabcdn) = K(3) wrews(5-m)
1 1
log P(a,b,c,d|p) = logK + alog > + blog i1+ clog(2u) + dlog (5 - 3[1.)

noo2u %—3”

1%}
— log P(a, b, c,d|p) =
Op

For MLE, set % log P = 0 and solve for u to get

_ b+c
= 6(b+c+d)

Simple Example

Hidden Labels

What if we only know that there are h “high grades”? (Exact labels are missing.)

Now how do we find the maximum likelihood estimate of 1?

1. Expectation:
Fix p and infer the expected values of a and b:

a= 1/2 , b= S
1/2+p 12+

Since we know 2 = 17‘/; and a+ b= h.

2. Maximization:

Fix these fractions a and b and compute the maximum likelihood p as before:

b+c
6(b+c+d)

Hnew =

3. Repeat.

Formal Setup for General EM Algorithm
Let D = {x(M),... x(M} be n observed data vectors.

Let Z = {z(M,... 2" be n values of hidden variables (i.e., the
cluster labels).

Log-likelihood of observed data given model:

L(6) = log p(D|6) = log 3 p(D. Z|6)
V4

Note: both 6 and Z are unknown.



Fun with Jensen’s Inequality General EM Algorithm
Alternate between steps until convergence:
E step:
Let Q(Z) be any distribution over the hidden variables: o . )
» Maximize F wrt Q, keeping 6 fixed.
D Z|9) » Solution:
log P(D|0) = logy  Q(Z :
g P(D|6) gZ @ Q< — p(Z|D. 6%
(D Z10)
= ZQ Q(2) M step:
1 » Maximize F wrt 0, keeping @ fixed
= Q(Z)log p(D, Z|0) + Q(Z)log —— » Keeping
Z zz: Q(2) » Solution:
= F(Q,0
( ) 9k+1 = arg m021>< F(Qk+1,0)
= Z|D,0%)log p(X, Z
argmeaxzsz( D, 6%)log p(X, Z|6)
General EM Algorithm in English Convergence

The EM Algorithm will converge because:

Alternate steps until model parameters don't change much:
» During E step, we make F(Q**1 6%) = log P(D|6%).

E step:

Estimate distribution over labels given a certain fixed model. » During M step, we choose 8¥*1 that increases F.
> Recall that F is a lower bound,

M step: F(Q**1, theta"*1) < log P(D|6**1).

Choose new parameters for model to maximize expected
log-likelihood of observed data and hidden variables.

v

Implies
log P(D|6) < log P(D|6* 1)

» Implies convergence! (Why?)




Notes Example: EM for GMM

Things to remember:

» Often closed form for both E and M step.
» Must specify stopping criteria.

» Complexity depends on number of iterations and time to
compute E and M steps.

» May (will) converge to local optimum.

Initial model parameters.

Example: EM for GMM Example: EM for GMM

After first iteration ) )
After second iteration




Example: EM for GMM Example: EM for GMM

After third iteration After fourth iteration

Example: EM for GMM Example: EM for GMM

After fifth iteration After sixth iteration




Example: EM for GMM Relation to K-Means

Similarities

K-Means used GMM with:
» covariance ¥ = [ (fixed)
» uniform P(Z) (fixed)
» unknown means

Alternated estimating labels and recomputing unknown model
parameters.

Difference
Makes “hard” assignment to cluster during E step.

After convergence

How to Pick K7 How to Pick K7

Do we want to pick the K that maximizes likelihood? Do we want to pick the K that maximizes likelihood?

Other options:

» Cross-validation
» Add complexity penalty to objective function

» Prior knowledge




Summary

Clustering:
Infer assignments to hidden variables and hidden model parameters
simultaneously.

EM Algorithm:

Powerful, popular, general method for doing this.
EM Applications:

» Image segmentation

» SLAM

» Estimating motion models for tracking
» Hidden Markov Models

> etc.



