Relational Model & Algebra

CPS 116
Introduction to Database Systems

Announcements (Thu. Aug. 28)

- Homework #1 will be assigned next Thursday
- Meeting room: LSRC 344 today and next Tuesday
 - Still looking for a permanent solution; watch your emails
- Office hours: see also course website
 - Jun: LSRC D327
 - Tue. 1.5 hours before class; Thu. 1.5 hours after
 - Ying: LSRC D125
 - Mon. & Wed. 4:05-5:05; Fri. 3-5pm
- Lecture notes
 - I will bring hardcopies of the "notes" version to lectures
 - The "complete" version will be posted after lecture, so be selective in what you copy down

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes
- Simplicity is a virtue!

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Name</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS116</td>
<td>Intro. to Database Systems</td>
</tr>
<tr>
<td>CPS130</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS114</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Enroll

Ordering of rows doesn’t matter (even though the output is always in some order)

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>CPS114</td>
</tr>
<tr>
<td>857</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>CPS113</td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
</tr>
</tbody>
</table>

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and objects of type in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)

- Instance
 - { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ... }
 - { (CPS116, Intro. to Database Systems), ... }
 - { (142, CPS116), (142, CPS114), ... }
Relational algebra

A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection

- Input: a table R
- Notation: $\sigma_p R$
 - p is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

Selection example

- Students with GPA higher than 3.0
 \[\sigma_{\text{GPA} > 3.0} \text{Student} \]

More on selection

- Selection predicate in general can include any column of R, constants, comparisons (\leq, \geq, etc.), and Boolean connectives (\land: and, \lor: or, and \neg: not)
- Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA} \geq 4.0 \land (\text{age} < 18 \lor \text{age} > 21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
- Example: student with the highest GPA
 \[\sigma_{\text{GPA} \geq \text{all GPA}} \text{Student} \]

Projection

- Input: a table R
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example

- ID’s and names of all students
 \[\pi_{\text{SID, name}} \text{Student} \]
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

Example: student ages

\[\pi_{\text{name}} \text{Student} \]

\[\pi_{\text{name}, \text{age}, \text{GPA}} \text{Student} \]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

Student \(\times \) Enroll

\[\text{Student} \times \text{Enroll} \]

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)
- That means cross product is commutative, i.e., \(R \times S = S \times R \) for any \(R \) and \(S \)

Derived operator: join

(A.k.a. “theta-join”)

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie_p S \)
 - \(p \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(p \)
- Shorthand for \(\sigma_p(R \times S) \)

Join example

- Info about students, plus CID’s of their courses

\[\text{Student} \bowtie_{\text{Student}.\text{SID} = \text{Enroll}.\text{SID}} \text{Enroll} \]

Use table name, column name syntax to disambiguate identically named columns from different input tables
Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_L(R \bowtie p S)$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- Student \bowtie Enroll $= \pi_{\text{SID, name, age, GPA, CID}}(\text{Student} \bowtie \text{Enroll})$
- $= \pi_{\text{SID, name, age, GPA, CID}}(\text{Student} \bowtie \text{Student.SID} = \text{Enroll.SID, Enroll})$

- Shorthand for $\pi_{\text{SID, name, age, GPA, CID}}(\text{Student} \bowtie \text{Student.SID} = \text{Enroll.SID, Enroll})$

Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated

Difference

- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for $R - (R - S)$
- Also equivalent to $S - (S - R)$
- And to $R \bowtie S$

Renaming

- Input: a table R
- Notation: $\rho_{A_1, A_2, \ldots} R$ or $\rho_{A_1, A_2, \ldots} R$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses
 \[\pi_{SID}(Enroll \bowtie_1 Enroll) \]
 Expression tree syntax:
 \[\pi_{SID1} \]

Summary of core operators

- Selection: \(\sigma_{P} R \)
- Projection: \(\pi_{L} R \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, \ldots} R \)
 - Does not really add “processing” power

Summary of derived operators

- Join: \(R \bowtie_{P} S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)
- Many more
 - Semijoin, anti-semijoin, quotient, …

An exercise

- Names of students in Lisa’s classes
 Writing a query bottom-up:
 \[\pi_{name}(\sigma_{name = “Lisa”} Enroll) \]

Another exercise

- CID’s of the courses that Lisa is NOT taking
 Writing a query top-down:
 \[\pi_{CID}(\sigma_{name = “Lisa”} Enroll) \]

A trickier exercise

- Who has the highest GPA?
 - Who does NOT have the highest GPA?
 - Whose GPA is lower than somebody else’s?

A deeper question:
When (and why) is “−” needed?
Monotone operators

Add more rows to the input...

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator \(q \phi \):
 \[R \subseteq R' \implies q\phi(R) \subseteq q\phi(R') \]

Classification of relational operators

- Selection: \(\sigma_{p} R \) Monotone
- Projection: \(\pi_{L} R \) Monotone
- Cross product: \(R \times S \) Monotone
- Join: \(R \bowtie S \) Monotone
- Natural join: \(R \bowtie S \) Monotone
- Union: \(R \cup S \) Monotone
- Difference: \(R - S \) Monotone w.r.t. \(R \); non-monotone w.r.t \(S \)
- Intersection: \(R \cap S \) Monotone

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Highest-GPA query is non-monotone
 - Current highest GPA is 4.1
 - Add another GPA 4.2
 - Old answer is invalidated
 - So it must use difference!

Why do we need core operator \(X \)?

- Difference
 - The only non-monotone operator
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection? Projection?
 - Homework problem ☺

Why is r.a. a good query language?

- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus

- \{ s.SID | s \in Student \land
 \neg(\exists s' \in Student : s.GPA < s'.GPA) \}, or
- \{ s.SID | s \in Student \land
 (\forall s' \in Student : s.GPA \geq s'.GPA) \}
- Relational algebra = "safe" relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - \{ s.name | \neg(c \in Student) \}
 - Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart’s ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!