Relational Database Design Theory

CPS 116
Introduction to Database Systems

Announcements (Tue. Sep. 9)

- Homework #1 due in one week
- Need a help session this Friday or next Monday?
- Course project description available today
 - Choice of "standard" or "open"
 - One- to three-person team (approval needed beyond 3)
 - Two milestones + demo/report
- Milestone #1 due in ~5½ weeks, right after fall break

Motivation

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form X → Y, where X and Y are sets of attributes in a relation R
- X → Y means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

- Address (street_address, city, state, zip)
- street_address, city, state → zip
- zip → city, state
- zip, state → zip?
 - This is a trivial FD
 - Trivial FD: LHS ⊇ RHS
- zip → state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS ∩ RHS = ∅

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

- K → all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s F
- Does another FD follow from F?
 - Are some of the FD’s in F redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s F that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to F is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in F and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$\text{StudentGrade} (\text{SID, name, email, CID, grade})$
- $\text{SID} \rightarrow \text{name, email}$
- $\text{email} \rightarrow \text{SID}$
- $\text{SID, CID} \rightarrow \text{grade}$

(Not a good design, and we will see why later)

Example of computing closure

- F includes:
 - $\text{SID} \rightarrow \text{name, email}$
 - $\text{email} \rightarrow \text{SID}$
 - $\text{SID, CID} \rightarrow \text{grade}$
- $\{\text{CID, email}\}^+ = ?$
- $\text{email} \rightarrow \text{SID}$
 - Add SID; closure is now $\{\text{CID, email, SID}\}$
- $\text{SID} \rightarrow \text{name, email}$
 - Add name, email; closure is now $\{\text{CID, email, SID, name}\}$
- $\text{SID, CID} \rightarrow \text{grade}$
 - Add grade; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation R and set of FD’s F
- Does another FD $X \rightarrow Y$ follow from F?
 - Compute X^+ with respect to F
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from F
- Is K a key of R?
 - Compute K^+ with respect to F
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrowYZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrowYZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

That b is always associated with a is recorded by multiple rows: redundancy, update anomaly, deletion anomaly

Example of redundancy

- $\text{StudentGrade} (\text{SID}, \text{name, email, CID, grade})$
- $\text{SID} \rightarrow \text{name, email}$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation: \triangleleft

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{atts}(R) = \text{atts}(S) \cup \text{atts}(T)$
 - $S = \pi_{\text{atts}(S)} (R)$
 - $T = \pi_{\text{atts}(T)} (R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- $SID \rightarrow name, email$
- $email \rightarrow SIDs$
- $SSID, CID \rightarrow grade$

Another example

- $SID \rightarrow name, email$
- $email \rightarrow SID$
- $SID, CID \rightarrow grade$

- $StudentGrade (SID, name, email, CID, grade)$
 - BCNF violation: $email \rightarrow SIDs$
- $StudentID (email, SID)$
 - BCNF
- $StudentGrade' (email, name, CID, grade)$
 - BCNF violation: $email \rightarrow name$
- $StudentName (email, name)$
 - BCNF
- $Grade (email, CID, grade)$
 - BCNF
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation: $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Proof makes use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- **Student (SID, CID, club)**
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

MVD examples

Student (SID, CID, club)

- $SID \rightarrow CID$
- $SID \rightarrow club$
 - Intuition: given SID, CID and club are “independent”
- SID, $CID \rightarrow club$
 - Trivial: $LHS \cup RHS = all\ attributes\ of\ R$
- SID, $CID \rightarrow SID$
 - Trivial: $LHS \supseteq RHS$

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If $X \rightarrow Y$, then $X \rightarrow attr(R) - X - Y$
- MVD augmentation:
 - If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity:
 - If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD):
 - If $X \rightarrow Y$, then $X \rightarrow Y$
 - Try proving things using these!
- Colaesece:
 - If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$b_1 = b_2$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>$c_1 = c_2$</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$b_1 = b_2$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>$c_1 = c_2$</td>
</tr>
</tbody>
</table>

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow BC$</td>
<td>$b_1 = b_2$</td>
</tr>
</tbody>
</table>

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
 - Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

Student (SID, CID, club)
4NF violation: SID \rightarrow CID

Enroll (SID, CID)
4NF

Join (SID, club)
4NF

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!

- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic