“Active” data

- Constraint enforcement: When an operation violates a constraint, abort the operation or try to “fix” data
 - Example: enforcing referential integrity constraints
 - Generalize to arbitrary constraints?
- Data monitoring: When something happens to the data, automatically execute some action
 - Example: When price rises above $20 per share, sell
 - Example: When enrollment is at the limit and more students try to register, email the instructor

Announcements (October 30)

- Homework #2 due next Thursday
- Project milestone #2 due in 1½ weeks
Triggers

- A trigger is an event-condition-action (ECA) rule
 - When event occurs, test condition; if condition is satisfied, execute action

- Example:
 - Event: whenever there comes a new student…
 - Condition: with GPA higher than 3.0…
 - Action: then make him/her take CPS116!

Trigger example

```sql
CREATE TRIGGER CPS116AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll
VALUES(newStudent.SID, 'CPS116');
```

Trigger options

- Possible events include:
 - INSERT ON table
 - DELETE ON table
 - UPDATE (OF column) ON table

- Granularity—trigger can be activated:
 - FOR EACH ROW modified
 - FOR EACH STATEMENT that performs modification

- Timing—action can be executed:
 - AFTER or BEFORE the triggering event
Transition variables

- **OLD ROW**: the modified row before the triggering event
- **NEW ROW**: the modified row after the triggering event
- **OLD TABLE**: a hypothetical read-only table containing all modified rows before the triggering event
- **NEW TABLE**: a hypothetical table containing all modified rows after the triggering event

Not all of them make sense all the time, e.g.
- **AFTER INSERT** statement-level triggers
 - Can use only:
- **BEFORE DELETE** row-level triggers
 - Can use only:
 - etc.

Statement-level trigger example

```sql
CREATE TRIGGER CPS116AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, 'CPS116'
 FROM newStudents
 WHERE GPA > 3.0);
```

BEFORE trigger example

- Never give faculty more than 50% raise in one update

```sql
CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;
```

BEFORE triggers are often used to “condition” data
Another option is to raise an error in the trigger body to abort the transaction that caused the trigger to fire
Statement- vs. row-level triggers

Why are both needed?

- Certain triggers are only possible at statement level
- Simple row-level triggers are easier to implement
 - Statement-level triggers require significant amount of state to be maintained in OLD TABLE and NEW TABLE
 - However, a row-level trigger does get fired for each row, so complex row-level triggers may be inefficient for statements that generate lots of modifications

Another statement-level trigger

- Give faculty a raise if GPA's in one update statement are all increasing

 CREATE TRIGGER AutoRaise
 AFTER UPDATE OF GPA ON Student
 REFERENCING OLD TABLE AS o, NEW TABLE AS n
 FOR EACH STATEMENT
 WHEN (UPDATE Faculty SET salary = salary + 1000;

 A row-level trigger would be difficult to write in this case

System issues

- Recursive firing of triggers
 - Action of one trigger causes another trigger to fire
 - Can get into an infinite loop
 - Some DBMS restrict trigger actions
 - Most DBMS set a maximum level of recursion (16 in DB2)
- Interaction with constraints (very tricky to get right!)
 - When do we check if a triggering event violates constraints?
 - After a BEFORE trigger (so the trigger can fix a potential violation)
 - Before an AFTER trigger
 - AFTER triggers also see the effects of, say, cascaded deletes caused by referential integrity constraint violations
 (Based on DB2; other DBMS may implement a different policy)
Views

- A view is like a “virtual” table
 - Defined by a query, which describes how to compute the view contents on the fly
 - DBMS stores the view definition query instead of view contents
 - Can be used in queries just like a regular table

Creating and dropping views

- Example: CPS116 roster
 - CREATE VIEW CPS116Roster AS
 SELECT SID, name, age, GPA
 FROM Student
 WHERE SID IN (SELECT SID FROM Enroll
 WHERE CID = 'CPS116');
 - To drop a view
 - DROP VIEW view_name;

Using views in queries

- Example: find the average GPA of CPS116 students
 - SELECT AVG(GPA) FROM CPS116Roster;
 - To process the query, replace the reference to the view by its definition
 - SELECT AVG(GPA)
 FROM (SELECT SID, name, age, GPA
 FROM Student
 WHERE SID IN (SELECT SID
 FROM Enroll
 WHERE CID = 'CPS116'));
Why use views?

- To hide data from users
- To hide complexity from users
- Logical data independence
 - If applications deal with views, we can change the underlying schema without affecting applications
 - Recall physical data independence: change the physical organization of data without affecting applications
- To provide a uniform interface for different implementations or sources
 - Real database applications use tons of views

Modifying views

- Does not seem to make sense since views are virtual
- But does make sense if that is how users see the database
- Goal: modify the base tables such that the modification would appear to have been accomplished on the view

A simple case

```
CREATE VIEW StudentGPA AS
    SELECT SID, GPA FROM Student;
DELETE FROM StudentGPA WHERE SID = 123;
```

translates to:

```
DELETE FROM Student WHERE SID = 123;
```
An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;
INSERT INTO HighGPAStudent
VALUES(987, 2.5);
★ No matter what you do on Student, the inserted row will not be in HighGPAStudent

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;
★ Note that you can rename columns in view definition
UPDATE AverageGPA SET GPA = 2.5;
★ Set everybody’s GPA to 2.5?
★ Adjust everybody’s GPA by the same amount?
★ Just lower Lisa’s GPA?

SQL92 updateable views
★ More or less just single-table selection queries
★ No join
★ No aggregation
★ No subqueries
★ Arguably somewhat restrictive
★ Still might get it wrong in some cases
★ See the slide titled “An impossible case”
★ Adding WITH CHECK OPTION to the end of the view definition will make DBMS reject such modifications
Indexes

- An index is an auxiliary persistent data structure
 - Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.
 - More on indexes later in this course!
- An index on \(R.A \) can speed up accesses of the form
 - \(R.A = value \)
 - \(R.A > value \) (sometimes; depending on the index type)
- An index on \((R.A_1, \ldots, R.A_n)\) can speed up
 - \(R.A_1 = value_1 \wedge \ldots \wedge R.A_n = value_n \)
 - \((R.A_1, \ldots, R.A_n) > (value_1, \ldots, value_n)\) (again depends)
- Is an index on \((R.A, R.B)\) equivalent to one on \((R.B, R.A)\)?
- How about an index on \(R.A\) plus another index on \(R.B\)?

Examples of using indexes

- SELECT * FROM Student WHERE name = 'Bart'
 - Without an index on Student.name: must scan the entire table if we store Student as a flat file of unordered rows
 - With index: go “directly” to rows with name = 'Bart'
- SELECT * FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Without any index: for each Student row, scan the entire Enroll table for matching SID
 - Sorting could help
 - With an index on Enroll.SID: for each Student row, directly look up Enroll rows with matching SID

Creating and dropping indexes in SQL

- CREATE [UNIQUE] INDEX index_name ON
 table_name(column_name_1, ..., column_name_n);
 - With UNIQUE, the DBMS will also enforce that
 \(\{column_name_1, \ldots, column_name_n\} \) is a key of table_name
- DROP INDEX index_name;

- Typically, the DBMS will automatically create indexes for PRIMARY KEY and UNIQUE constraint declarations
Choosing indexes to create

More indexes = better performance?
- Indexes take space
- Indexes need to be maintained when data is updated
- Indexes have one more level of indirection

- Optimal index selection depends on both query and update workload and the size of tables
 - Automatic index selection is still an area of active research

Summary of SQL features covered

- Query
- Modification
- Constraints
- Transactions
- API
- Triggers
- Views
- Indexes