Query Processing

CPS 116
Introduction to Database Systems

Announcements (November 11)

- Project milestone #2 due today!
- Homework #3 sample solution available
- Homework #4 assigned
 - Due in two weeks

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time
Notation
- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement

Table scan
- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O's:
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement:
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join
- $R \bowtie S$
- For each block of R, and for each r in the block:
 - For each block of S, and for each s in the block:
 - Output rs if p evaluates to true over r and s
 - R is called the outer table; S is called the inner table
- I/O's:
- Memory requirement:
- Improvement: block-based nested-loop join
 - For each block of R, and for each block of S:
 - For each r in the R block, and for each s in the S block: …
 - I/O's:
 - Memory requirement: same as before
More improvements of nested-loop join

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O: \(B(R) + \lceil B(R) / (M - 2) \rceil \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot B(S) / M \)
 - Memory requirement: \(M \) (as much as possible)
- Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?
Problem: sort \(R \), but \(R \) does not fit in memory

- Pass 0: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - There are \(\lceil B(R) / M \rceil \) level-0 sorted runs
- Pass \(i \): merge \((M - 1) \) level-(\(i-1 \)) runs at a time, and write out a level-\(i \) run
 - \((M - 1) \) memory blocks for input, 1 to buffer output
 - \# of level-\(i \) runs = \(\lceil \# \ of \ level-(i-1) \ runs / (M - 1) \rceil \)
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Performance of external merge sort

- Number of passes: $\lceil \log_{M-1} \left(\frac{B(R)}{M} \right) \rceil + 1$
- I/O’s
 - Multiply by $2 \cdot B(R)$; each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \cdot \log M B(R))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off:
- Blocked I/O
 - Instead of reading/writing one disk block at a time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off:

Sort-merge join

- $R \bowtie_{R,A = S,B} S$
- Sort R and S by their join attributes, and then merge $r, s = \text{the first tuples in sorted } R \text{ and } S$
 - Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then $s = \text{next tuple in } S$
 - else if $r.A < s.B$ then $r = \text{next tuple in } R$
 - else output all matching tuples, and $r, s = \text{next in } R \text{ and } S$
- I/O’s: sorting + $2 \cdot B(R) + 2 \cdot B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins
Optimization of SMJ

- **Idea:** combine join with the merge phase of merge sort
- **Sort:** produce sorted runs of size M for R and S
- **Merge and join:** merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of two-pass SMJ

- **I/O's:** $3 \cdot (B(R) + B(S))$
- **Memory requirement**
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{(B(R) + B(S))}$
Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though
 - Examples:

Hash join

- \(R \bowtie_{R.A = S.B} S \)
- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Partitioning phase

- Partition \(R \) and \(S \) according to the same hash function on their join attributes
Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram of disk partitions and memory](image)

Performance of hash join

- I/O's: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 - $M > \sqrt{B(R)}$
 - We can always pick R to be the smaller relation, so:
 $M > \sqrt{\text{min}(B(R), B(S))}$

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - \(\sqrt{\min(B(R), B(S))} < \sqrt{B(R) + B(S)} \)
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if \(R \) and/or \(S \) are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
Duality of sort and hash

- **Divide-and-conquer paradigm**
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- **Handling very large inputs**
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- **I/O patterns**
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- **Equality predicate:** $\sigma_A = v(R)$
 - Use an ISAM, B*-tree, or hash index on $R(A)$
- **Range predicate:** $\sigma_A > v(R)$
 - Use an ordered index (e.g., ISAM or B*-tree) on $R(A)$
 - Hash index is not applicable
- **Indexes other than those on $R(A)$ may be useful**
 - Example: B*-tree index on $R(A, B)$
 - How about B*-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- **Index-only queries which do not require retrieving actual tuples**
 - Example: $\pi_A(\sigma_A > v(R))$
- **Primary index clustered according to search key**
 - One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):
- Consider $\sigma_{A > v}(R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
 - Idea: use the value of $R.A$ to probe the index on $S(B)$
 - For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
 - I/O’s: $B(R) + |R| \cdot \text{(index lookup)}$
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
 - Memory requirement: 2

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
 - Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
 - Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
<table>
<thead>
<tr>
<th>Summary of tricks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
</tr>
<tr>
<td>- Selection, duplicate-preserving projection, nested-loop join</td>
</tr>
<tr>
<td>Sort</td>
</tr>
<tr>
<td>- External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation</td>
</tr>
<tr>
<td>Hash</td>
</tr>
<tr>
<td>- Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>- Selection, index nested-loop join, zig-zag join</td>
</tr>
</tbody>
</table>