Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 18)

✦ Homework #4 due in one week!

Query optimization

✦ One logical plan → “best” physical plan
✦ Questions
 • How to enumerate possible plans
 • How to estimate costs
 • How to pick the “best” one
✦ Often the goal is not getting the optimum plan, but instead avoiding the horrible ones
 Any of these will do
 1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: \(\times \) and \(\sigma \) are associative and commutative (except column ordering, but that is unimportant)

\[
\begin{align*}
R \times S & = S \times R \\
R \sigma p S & = S \sigma p R \\
R \pi L R & = \pi L R
\end{align*}
\]

More relational algebra equivalences

- Convert \(\sigma p \times \alpha R \) to/from \(\alpha \sigma p (R \times S) = R \sigma p S \)
- Merge/split \(\sigma \)'s: \(\sigma p_1 \sigma p_2 (R) = \sigma p_1 \land p_2 (R) \)
- Merge/split \(\pi \)'s: \(\pi L_1 (\pi L_2 R) = \pi L_1 R \), where \(L_1 \subseteq L_2 \)
- Push down/pull up \(\sigma \): \(\sigma p R \times S = \sigma p (R \times S) \), where
 - \(p \) is a predicate involving only \(R \) columns
 - \(\sigma p \) is a predicate involving only \(S \) columns
- Push down \(\pi \): \(\pi L \sigma p R = \pi L_1 (\pi L_2 \sigma p R) \), where
 - \(L_1 \subseteq L_2 \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

\[
\begin{align*}
\pi \text{Student name}=\text{"Bart" \land Student SID = Enroll.SID \land Enroll.CID = Course.CID} \\
\sigma \text{Student name}=\text{"Bart"} \land \text{Enroll.CID = Course.CID} \\
\pi \text{Student name}=\text{"Bart"} \land \text{Enroll.SID = Enroll.SID} \\
\sigma \text{Student name}=\text{"Bart"} \land \text{Enroll.CID = Course.CID} \\
\end{align*}
\]
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll)));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\begin{aligned}
&\text{PROJECT (Title)} \\
&\text{MERGE-JOIN (CID)} \\
&\text{SORT (CID)} \\
&\text{MERGE-JOIN (SID)} \\
&\text{SORT (SID)} \\
&\text{SCAN (Course)} \\
&\text{SCAN (Enroll)} \\
&\text{SCAN (Student)} \\
&\text{FILTER (name = "Bart")} \\
\end{aligned}
\]

- We have: cost estimation for each operator
 - Example: \(\text{SORT(CID)}\) takes \(2 \times B(\text{input})\)
 - But what is \(B(\text{input})\)?
- We need: size of intermediate results

Selections with equality predicates

- \(Q: \sigma_A = v R\)
- Suppose the following information is available
 - Size of \(R\): \(|R|\)
 - Number of distinct \(A\) values in \(R\): \(|\pi_A R|\)
- Assumptions
 - Values of \(A\) are uniformly distributed in \(R\)
 - Values of \(v\) in \(Q\) are uniformly distributed over all \(R.A\) values
- \(|Q| \approx |R| / |\pi_A R|\)
 - Selectivity factor of \((A = v)\) is \(1 / |\pi_A R|\)

Conjunctive predicates

- \(Q: \sigma_A = a \text{ and } B = v R\)
- Additional assumptions
 - \((A = a)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
 - No “over”-selection
 - Counterexample: \(A\) is the key
- \(|Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|)\)
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

\[\Phi: \sigma_A \neq v R \]
- Selectivity factor of \(\neg p \) is \((1 - \text{selectivity factor of } p) \)

\[\Phi: \sigma_A = a \lor B = v R \]
- \(|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|) \)

Range predicates

\[\Phi: \sigma_A > v R \]
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3 \)
 - With more information
 - Largest \(R.A \) value: \(\text{high}(R.A) \)
 - Smallest \(R.A \) value: \(\text{low}(R.A) \)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v)/(\text{high}(R.A) - \text{low}(R.A)) \)
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

\[\Phi: R(A, B) \bowtie S(A, C) \]
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S|/\max(|\pi_A R|, |\pi_A S|) \)
 - Selectivity factor of \(R.A = S.A \) is \(1/\max(|\pi_A R|, |\pi_A S|) \)
Multiway equi-join

Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)

What is the number of distinct C values in the join of R and S?

Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then \(\pi_A(R \bowtie S) = \pi_A R \)
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)

Start with the product of relation sizes
- \(|R| \cdot |S| \cdot |T| \)

Reduce the total size by the selectivity factor of each join predicate
- \(R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|) \)
- \(S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|) \)
- \(|Q| \approx \frac{(|R| \cdot |S| \cdot |T|)}{(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|))} \)

Cost estimation: summary

Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)

Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer “hints”

SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:
 \[R_2 \rightarrow R_1 \rightarrow R_3 \rightarrow R_4 \rightarrow R_5 \]

- Just considering different join orders, there are
 \[(2n - 2)! / (n - 1) \] bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 - 30240 for \(n = 6 \)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?
 - Significantly fewer, but still lots

A greedy algorithm

- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_j = \sigma_{R_i} \)

- Start with the pair \(S_1, S_2 \) with the smallest estimated size for \(S_1 \bowtie S_2 \)

- Repeat until no relation is left:
 - Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size

 \[S_k \rightarrow \] Pick most efficient join method

 Minimize expected size

 Remaining relations to be joined

 Current subplan
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach