Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 18)

- Homework #4 due in one week!

Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \times and $\mathbin{\lor}$ are associative and commutative (except column ordering, but that is unimportant)

Relational query rewrite example

- Convert $\sigma_{\text{\textless} \text{\textless} \text{\textless}}$ to/from $\mathbin{\lor} R \sigma_{\text{\textless} R \times} S = R \mathbin{\lor} S$
- Merge/split σ: $\sigma_{\mathbin{\lor} p R \sigma_{p, S}} = \sigma_{\mathbin{\lor} p R \sigma_{p, S}}$
- Merge/split π: $\pi_{L_{p, p}, R} = \pi_{L_{p, p}, R}$
- Push down/pull up σ:
 - $\sigma_{p, p, p} (R \mathbin{\lor} S, S) = (\sigma_{p, p} R \mathbin{\lor} S, \sigma_{p, p} S)$, where
 - p is a predicate involving only R columns
 - p' is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π:
 - $\pi_{L_{p, p}, R} = \pi_{L_{p, p}, R}$
 - L' is the set of columns referenced by p that are not in L.
- Many more (seemingly trivial) equivalences...
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong—consider two Bart’s, each taking two classes
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
 - Right—assuming Student.SID is a key

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Course
 , (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose a CPS class is empty?

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW Magic AS (
 SELECT CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose a CPS class is empty?

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\begin{array}{c}
\text{PROJECT (with) } \quad \text{MERGE-JOIN (GID)} \\
\text{SORT (GID)} \quad \text{MERGE-JOIN (GID)} \\
\text{INPUT to SORT(GID):} \quad \text{FILTER (name = "Bart")} \quad \text{SORT (SID)} \quad \text{SCAN (sorted)} \\
\end{array}
\]

- We have: cost estimation for each operator
 - Example: SORT(GID) takes 2 \times B(input)
 - But what is B(input)?
- We need: size of intermediate results

Conjunctive predicates

- \(Q: \sigma_A = a \text{ and } B = v \)
- Additional assumptions
 - \((A = a)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
- No "over"-selection
 - Counterexample: A is the key
- \(|Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|)\)
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- \(Q: \sigma_A \neq a \text{ or } B = v \)
- Selectivity factor of \(\neg \phi \) is \((1 - \text{selectivity factor of } \phi)\)
- \(|Q| \approx |R| \cdot (1 - 1/|\pi_A R|) + 1/|\pi_B R|)\)
- No! Tuples satisfying \((A = a)\) and \((B = v)\) are counted twice
 - Intuition: \((A = a)\) or \((B = v)\) is equivalent to \(\neg (\neg (A = a) \text{ AND } \neg (B = v))\)

Range predicates

- \(Q: \sigma_A > v \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A\) value: high(R.A)
 - Smallest \(R.A\) value: low(R.A)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A))\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Selections with equality predicates

- \(Q: \sigma_A = v \)
 - Suppose the following information is available
 - Size of \(R\): \(|R|\)
 - Number of distinct \(A\) values in \(R\): \(|\pi_A R|\)
 - Assumptions
 - Values of \(A\) are uniformly distributed in \(R\)
 - Values of \(v\) in \(Q\) are uniformly distributed over all \(R.A\) values
 - \(|Q| \approx |R| / |\pi_A R|\)
 - Selectivity factor of \((A = v)\) is \(1/|\pi_A R|\)

Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
 - Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(\pi_A R \subseteq \pi_A S\)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
 - \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)\)
 - Selectivity factor of \(R.A = S.A\) is \(1/\max(|\pi_A R|, |\pi_A S|)\)
Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms

Search for the best plan

- Huge search space
- “Bushy” plan example:
 - Just considering different join orders, there are \((2n - 2)! / (n - 1)\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 - 30240 for \(n = 6 \)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?
 - Significantly fewer, but still lots— \(n! \) (720 for \(n = 6 \))

A greedy algorithm

- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{p_i} R_i \)
 - Start with the pair \(S_j, S_i \) with the smallest estimated size for \(S_j \bowtie S_i \)
 - Repeat until no relation is left:
 - Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size

Multiway equi-join (cont’d)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1 / \max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1 / \max(|\pi_C S|, |\pi_C T|) \)
 - \(|Q| \approx (|R| \cdot |S| \cdot |T|) / (\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

The need for “interesting order”

- Example: R(A, B) \bowtie S(A, C) \bowtie T(A, D)
- Best plan for R \bowtie S: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach