Web Searching & Indexing

CPS 116
Introduction to Database Systems

Announcements (December 2)

- Homework #4 sample solution available
- Course project demo period: December 8-13
 - Each project gets a 30-minute slot with me
 - Email me to schedule demo slots
- Final exam next Saturday, Dec. 13, 7-10pm
 - Early final next Wednesday, Dec. 10, 9am-12pm
 - Again, open book, open notes
 - Focus on the second half of the course
 - Sample final available
 - Sample final solution available Thursday

Keyword search

What are the documents containing both “database” and “search”?
Keywords × documents

<table>
<thead>
<tr>
<th>All keywords</th>
<th>All documents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Document 1</td>
</tr>
<tr>
<td>"cat"</td>
<td>1</td>
</tr>
<tr>
<td>"database"</td>
<td>0</td>
</tr>
<tr>
<td>"dog"</td>
<td>0</td>
</tr>
<tr>
<td>"search"</td>
<td>0</td>
</tr>
</tbody>
</table>

1 means keyword appears in the document; 0 means otherwise

- Inverted lists: store the matrix by rows
- Signature files: store the matrix by columns

Inverted lists

- Store the matrix by rows
- For each keyword, store an inverted list
 - \((\text{keyword}, \text{doc-id-list})\)
 - \("\text{database}\”, \{3, 7, 142, 857, \ldots\}\)
 - \("\text{search}\”, \{3, 9, 192, 512, \ldots\}\)
 - It helps to sort \(\text{doc-id-list}\) (why?)
- Vocabulary index on keywords
 - B*-tree or hash-based
- How large is an inverted list index?

Using inverted lists

- Documents containing "database"
 - Use the vocabulary index to find the inverted list for "database"
 - Return documents in the inverted list
- Documents containing "database" AND "search"
- OR? NOT?
What are “all” the keywords?

- All sequences of letters (up to a given length)?
 - … that actually appear in documents!
- All words in English?
- Plus all phrases?
 - Alternative: approximate phrase search by proximity
- Minus all stop words
 - They appear in nearly every document, e.g., a, of, the, it
 - Not useful in search
- Combine words with common stems
 - Example: database, databases
 - They can be treated as the same for the purpose of search

Frequency and proximity

- Frequency
 - \{(keyword, \{<doc-id, number-of-occurrences>, <doc-id, number-of-occurrences>, …\})\}
- Proximity (and frequency)
 - \{(keyword, \{<doc-id, \{position-of-occurrence\}, position-of-occurrence\), …\}), \{doc-id, \{position-of-occurrence\), …\}, …\}
 - When doing AND, check for positions that are near

Signature files

- Store the matrix by columns and compress them
- For each document, store a w-bit signature
- Each word is hashed into a w-bit value, with only \(s < w\) bits turned on
- Signature is computed by taking the bit-wise OR of the hash values of all words on the document
 - \(hash(\text{"database"}) = 0110\) \(\text{doc}_1\) contains \text{"database"}?
 - \(hash(\text{"dog"}) = 1100\) \(\text{doc}_2\) contains \text{"dog"}?
 - \(hash(\text{"cat"}) = 0010\) \(\text{doc}_3\) contains \text{"cat"} and \text{"dog"}?
 - Some false positives; no false negatives
Bit-sliced signature files

- **Motivation**
 - To check if a document contains a word, we only need to check the bits that are set in the word’s hash value.
 - So why bother retrieving all w bits of the signature?

- Instead of storing n signature files, store w bit slices.
- Only check the slices that correspond to the set bits in the word’s hash value.
- Start from the sparse slices.

<table>
<thead>
<tr>
<th>Slice</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 1 1 0 1 0 0</td>
</tr>
<tr>
<td>4</td>
<td>0 1 1 0 1 1 0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0 1 0 1 0 0</td>
</tr>
</tbody>
</table>

Inverted lists versus signatures

- Inverted lists better for most purposes (*TODS, 1998*).
- Problems of signature files:
 - False positives.
 - Hard to use because s, w, and the hash function need tuning to work well.
 - Long documents will likely have mostly 1’s in signatures.
 - Common words will create mostly 1’s for their slices.
 - Difficult to extend with features such as frequency, proximity.

- Saving grace of signature files:
 - Sizes are tunable.
 - Good for lots of search terms.
 - Good for computing similarity of documents.

Ranking result pages

- A single search may return many pages.
 - A user will not look at all result pages.
 - Complete result may be unnecessary.
 - Result pages need to be ranked.

- Possible ranking criteria:
 - Based on content
 - Number of occurrences of the search terms.
 - Similarity to the query text.
 - Based on link structure
 - Backlink count.
 - PageRank.
 - And more…
Textual similarity

- Vocabulary: \(\{w_1, \ldots, w_n\} \)
- IDF (Inverse Document Frequency): \(\{f_1, \ldots, f_n\} \)
 \[f_i = \frac{1}{\text{the number of times } w_i \text{ appears on the Web}} \]
- Significance of words on page \(p \): \(\{p_1 f_1, \ldots, p_n f_n\} \)
 \[p_i = \text{the number of times } w_i \text{ appears on } p \]
- Textual similarity between two pages \(p \) and \(q \) is defined to be \(\{p_1 f_1, \ldots, p_n f_n\} \cdot \{q_1 f_1, \ldots, q_n f_n\} = p_1 q_1 f_1^2 + \ldots + p_n q_n f_n^2 \)
 \[q \] could be the query text

Why weight significance by IDF?

- Many pages containing search terms may be of poor quality or irrelevant
 \[\text{Example: a page with just a line "search engine"} \]
- Many high-quality or relevant pages do not even contain the search terms
 \[\text{Example: Google homepage} \]
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 \[\text{Example: a page with line "search engine" repeated many times} \]

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 \[\text{Example: a page with just a line "search engine"} \]
- Many high-quality or relevant pages do not even contain the search terms
 \[\text{Example: Google homepage} \]
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 \[\text{Example: a page with line "search engine" repeated many times} \]
Backlink

- A page with more backlinks is ranked higher
- Intuition: Each backlink is a “vote” for the page’s importance
- Based on local link structure; still easy to spam
 - Create lots of pages that point to a particular page

Google’s PageRank

- Main idea: Pages pointed by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- Naïve PageRank
 - \(N(p) \): number of outgoing links from page \(p \)
 - \(B(p) \): set of pages that point to \(p \)
 - \(\text{PageRank}(p) = \sum_{q \in B(p)} (\text{PageRank}(q) / N(q)) \)
 - Each page \(p \) gets a boost of its importance from each page that points to \(p \)
 - Each page \(q \) evenly distributes its importance to all pages that \(q \) points to

Calculating naïve PageRank

- Initially, set all PageRank’s to 1; then evaluate \(\text{PageRank}(p) \leftarrow \sum_{q \in B(p)} (\text{PageRank}(q) / N(q)) \)
 - repeatedly until the values converge (i.e. a fixed point is reached)
Random surfer model

- A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the “back” button

- PageRank(p) measures the probability that a random surfer visits page p

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to “leak” eventually out of the Web

- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web

Practical PageRank

- d: decay factor

- PageRank(p) =
 \[d \cdot \sum_{q \in B(p)} \left(\frac{\text{PageRank}(q)}{N(q)} \right) + (1 - d) \]

- Intuition in the random surfer model
 - A surfer occasionally gets bored and jumps to a random page on the Web instead of following a random link on the current page
Google (1998)

- Inverted lists in practice contain a lot of context information

<table>
<thead>
<tr>
<th>HIT 2 bytes</th>
<th>Relative Capabilities</th>
<th>Relative Font Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan</td>
<td>cap: 1</td>
<td>cap: 1</td>
</tr>
<tr>
<td>In URL/title/meta tag</td>
<td>cap: 1</td>
<td>cap: 1</td>
</tr>
<tr>
<td>In anchor text</td>
<td>cap: 1</td>
<td>cap: 1</td>
</tr>
<tr>
<td>In URL/text</td>
<td>cap: 1</td>
<td>cap: 1</td>
</tr>
<tr>
<td>In anchor text</td>
<td>cap: 1</td>
<td>cap: 1</td>
</tr>
<tr>
<td>PageRank is not the final ranking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 - Type-weight: depends on the type of the occurrence
 - For example, large font weights more than small font
 - Count-weight: depends on the number of occurrences
 - Increases linearly first but then tapers off
 - For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - Closer proximity weights more

Trie: a string index

- A tree with edges labeled by characters
- A node represents the string obtained by concatenating all characters along the path from the root

What's the max fan-out?

- Compact trie: replace a path without branches by a single edge labeled by a string

Suffix tree

Index all suffixes of a large string in a compact trie
- Can support arbitrary substring matching
- Internal nodes have fan-out ≥ 2 (except the root)
- No two edges out of the same node can share the same first character

To get linear space
- Instead of inlining the string labels, store pointers to them in the original string
- Bad for external memory
Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but
- Instead of labeling each edge by a string, only label by the first character and the string length
- Leaves point to strings
 - Faster search (especially for external memory) because of inlining of the first character
 - But must validate answer at leaves for skipped characters

- A Pat tree indexes all suffixes of a string in a Patricia trie
- A String B-tree uses a Patricia trie to store and compare strings in B-tree nodes

Summary

- General tree-based string indexing tricks
 - Trie, Patricia trie, String B-tree
- Two general ways to index for substring queries
 - Index words: inverted lists, signature files
 - Index all suffixes: suffix tree, Pat tree, suffix array (not covered)
- Web search and information retrieval go beyond substring queries
 - IDF, PageRank, …