Web Searching & Indexing

CPS 116
Introduction to Database Systems

Announcements (December 2)
• Homework #4 sample solution available
• Course project demo period: December 8-13
 • Each project gets a 30-minute slot with me
 • Email me to schedule demo slots
• Final exam next Saturday, Dec. 13, 7-10pm
 • Early final next Wednesday, Dec. 10, 9am-12pm
 • Again, open book, open notes
 • Focus on the second half of the course
 • Sample final available
 • Sample final solution available Thursday

Keyword search

What are the documents containing both "database" and "search"?

Inverted lists

• Store the matrix by rows
• For each keyword, store an inverted list
 • (keyword, doc-id-list)
 • ("database", {3, 7, 142, 857, ...})
 • ("search", {3, 9, 192, 512, ...})
 • It helps to sort doc-id-list (why?)
• Vocabulary index on keywords
 • B*-tree or hash-based
• How large is an inverted list index?

Using inverted lists

• Documents containing "database"
 • Use the vocabulary index to find the inverted list for "database"
 • Return documents in the inverted list
• Documents containing "database" AND "search"
 • Return documents in the intersection of the two inverted lists
• OR? NOT?
 • Union and difference, respectively
What are “all” the keywords?

- All sequences of letters (up to a given length)?
- … that actually appear in documents!
- All words in English?
- Plus all phrases?
 - Alternative: approximate phrase search by proximity
- Minus all stop words
 - They appear in nearly every document, e.g., a, of, the, it
 - Not useful in search
- Combine words with common stems
 - Example: database, databases
 - They can be treated as the same for the purpose of search

Frequency and proximity

- Frequency
 - \(\{(\text{keyword}, \{(\text{doc-id}, \text{number-of-occurrences}), \\ldots \})\} \)
- Proximity (and frequency)
 - \(\{(\text{keyword}, \{(\text{doc-id}, \text{position-of-occurrence}_1, \text{position-of-occurrence}_2, \ldots \}), \\ldots \})\)
Textual similarity

- Vocabulary: \(\{w_1, \ldots, w_n\} \)
- IDF (Inverse Document Frequency): \(\{f_1, \ldots, f_n\} \)
 - \(f_i = 1 / \text{the number of times } w_i \text{ appears on the Web} \)
- Significance of words on page \(p \): \(\{p_1 f_1, \ldots, p_n f_n\} \)
 - \(p_i \) is the number of times \(w_i \) appears on \(p \)
- Textual similarity between two pages \(p \) and \(q \) is defined to be \(\{p_1 f_1, \ldots, p_n f_n\} \cdot \{q_1 f_1, \ldots, q_n f_n\} = p_1 q_1 f_1^2 + \cdots + p_n q_n f_n^2 \)
 - \(q \) could be the query text

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 - Example: a page with just a line “search engine”
- Many high-quality or relevant pages do not even contain the search terms
 - Example: Google homepage
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 - Example: a page with line “search engine” repeated many times

Google’s PageRank

- Main idea: Pages pointed by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- Naïve PageRank
 - \(N(p) \): number of outgoing links from page \(p \)
 - \(B(p) \): set of pages that point to \(p \)
 - \(\text{PageRank}(p) = \sum_{q \in B(p)} (\text{PageRank}(q) / N(q)) \)
 - Each page \(p \) gets a boost of its importance from each page that points to \(p \)
 - Each page \(q \) evenly distributes its importance to all pages that \(q \) points to

Calculating naïve PageRank

- Initially, set all PageRank’s to 1; then evaluate \(\text{PageRank}(p) \leftarrow \sum_{q \in B(p)} (\text{PageRank}(q) / N(q)) \)
 - repeatedly until the values converge (i.e. a fixed point is reached)

Why weight significance by IDF?

- Without IDF weighting, the similarity measure would be dominated by the stop words
 - “the” occurs frequently on the Web, so its occurrence on a particular page should be considered less significant
 - “engine” occurs infrequently on the Web, so its occurrence on a particular page should be considered more significant

Backlink

- A page with more backlinks is ranked higher
 - Intuition: Each backlink is a “vote” for the page’s importance
 - Based on local link structure; still easy to spam
 - Create lots of pages that point to a particular page
Random surfer model

- A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the "back" button

- PageRank(p) measures the probability that a random surfer visits page p

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to "leak" eventually out of the Web
- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web

Practical PageRank

- d: decay factor
- PageRank(p) =

\[
d \cdot \sum_{q \in B(p)} \left(\text{PageRank}(q) / N(q) \right) + (1 - d)
\]

- Intuition in the random surfer model
 - A surfer occasionally gets bored and jump to a random page on the Web instead of following a random link on the current page

Google (1998)

- Inverted lists in practice contain a lot of context information
 - Capitalization
 - Relative font size
 - In URL/title/meta tag
 - In anchor text
 - Within the page
 - Within the anchor

- PageRank is not the final ranking
 - Type-weight: depends on the type of the occurrence
 - For example, large font weights more than small font
 - Count-weight: depends on the number of occurrences
 - Increases linearly first but then tapers off
 - For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - Closer proximity weights more

Trie: a string index

- A tree with edges labeled by characters
- A node represents the string obtained by concatenating all characters along the path from the root
- Compact trie: replace a path without branches by a single edge labeled by a string

Suffix tree

- Index all suffixes of a large string in a compact trie
 - Can support arbitrary substring matching
 - Internal nodes have fan-out ≥ 2 (except the root)
 - No two edges out of the same node can share the same first character

To get linear space
- Instead of inlining the string labels, store pointers to them in the original string
- Bad for external memory
Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but
- Instead of labeling each edge by a string, only label by the first character and the string length
- Leaves point to strings
 - Faster search (especially for external memory) because of inlining of the first character
 - But must validate answer at leaves for skipped characters
- A Pat tree indexes all suffixes of a string in a Patricia trie
- A String B-tree uses a Patricia trie to store and compare strings in B-tree nodes

Summary

- General tree-based string indexing tricks
 - Trie, Patricia trie, String B-tree
- Two general ways to index for substring queries
 - Index words: inverted lists, signature files
 - Index all suffixes: suffix tree, Pat tree, suffix array (not covered)
- Web search and information retrieval go beyond substring queries
 - IDF, PageRank, …