
Midterm October 7, 2008

Midterm
(75 minutes open book exam)

Name:

credit max

Question 1 20
Question 2 20
Question 3 20
Question 4 20
Question 5 20

Total 100

1

Name:

Question 1. (20 = 10 + 5 + 5 points). Consider a set of
n intervals of the form[ai, bi] with 0 ≤ ai ≤ bi ≤ 1
for each1 ≤ i ≤ n.

(a) Describe an algorithm that finds a maximum
number of disjoint intervals in the set. Justify
your solution.

(b) Analyze the running time of your algorithm.

(c) You get the last five points if your algorithm
runs in time O(n log n).

Solution.

(a) At each step we get the interval in the remaining set
which minimum right endpoint. Then we remove the
intervals that intersect the one just chosen and we re-
peat. For the implementation, we store the intervals
in a priority queue ordered by right endpoint. The in-
tervals are removed implicitly as we add them to the
set only if they are disjoint from the intervals that are
already there.

R = −∞;
for i = 1 to n do

[a, b] = M INEXTRACT;
if R < a then

add[a, b] to the set;
R = b

endif
endfor.

(b) The running time is O(n) for constructing the priority
queue and O(log n) to remove each intervals. The
total is O(n logn).

(c) As shown in (b), the running time is O(n logn).

2

Name:

Question 2. (20 = 7 + 13 points). Suppose you count
from 0 to n, storing the digits of the current number,
j, in ternary notation in a linear array, that is,

j =
∑

i≥0

A[i] · 3i,

where eachA[i] is either0, 1, or 2.

(a) Describe the algorithm that does the counting.

(b) If you charge $1 each time the algorithm
changes a digit, what is the amortized cost per
increment?

Solution.

(a) We assumeA[i] = 0 for all i when we start the algo-
rithm.

for j = 0 to n do
i = 0;
while A[i] = 2 do

A[i] = 0; i = i + 1
endwhile;
A[i] = A[i]+1

endfor.

(b) Whenever we change a0 to a1, we add $1.5 to the
system. Of this, we take $1 to pay for the change
and leave $0.5 with the digit. Similarly, whenever we
change a1 to a 2 we add $1.5 to the system, again
taking $1 to pay for the change and leaving $0.5 with
the digit. Together with the earlier $0.5 this adds to
$1. Whenever we change a2 to a0, we use this $1
to pay for the change. Each time we incrementj, we
have some changes of the last type and exactly one
change of either the first or the second type. Hence,
we add a total of3n/2 to the system proving that this
is an upper bound on the total cost.

3

Name:

Question 3. (20 = 7 + 13 points). Construct a binary
search tree by successively insertingn distinct items
into an initially empty tree, without ever rebalancing
the tree. LetM(n) be the number of different trees
you can get.

(a) Draw theM(n) trees of n nodes forn =
0, 1, 2, 3.

(b) Write a recurrence relation that expressesM(n)
in terms ofM(0) to M(n − 1).

Solution.

(a) We haveN(0) = 1, N(1) = 1, N(2) = 2, N(3) =
5, with trees shown in the figure below.

(b) The root partitions the remainingn − 1 nodes intoi
nodes to the left andn− i− 1 nodes to the right. For
each such partition, the number of possibilities is the
number of possible left subtrees times the number of
possible right subtrees. More formally,

M(n) =

n−1∑

i=0

M(i) · M(n − i − 1).

Just to check the formula, we getM(3) =
M(0)M(2) + M(1)M(1) + M(2)M(0) = 2 + 1 +
2 = 5.

4

Name:

Question 4. (20 = 8 + 12 points). Recall that a binary
search tree is an AVL tree if for every node the height
difference between its left subtree and its right sub-
tree is at most1.

(a) Draw the smallest AVL tree of height three
(height four if you count the leaves) and color
the edges red and black so as to show that this
tree has the structure of a red-black tree.

(b) Prove that every AVL tree has the structure of
a red-black tree. In other words, show that the
edges can be colored red and black in a way that
satisfies the conditions of a red-black tree.

Solution.

(a) The AVL of height four (counting the edges to the
leaves) has seven internal nodes and is shown in the
figure below. Starting from the leaves we color the
edges first black and then red whenever this is neces-
sary to guarantee the same black-depth for all leaves.

(b) Leth be the height of the AVL tree,A. We construct
a red-black tree of the same shape starting with the
complete binary tree,A′, of heighth. To begin, we
color the edges of each path from the root to a leaf
in A′ alternating black and red such that the last edge
is black. Letv be the root of the AVL tree,u its left
child, andw its right child. Similarly, letv′ be the
root of A′, u′ its left child andw′ its right child. If
the tree rooted atu is higher than that rooted atw
then remove one subtree ofw′ and contract the two
edges going in and out ofw′ by a single, black edge,
thus removingw′. Note that this operation preserves
the red-black tree properties because one of the two
contracted edges is red and the other is black. Do the
symmetric operation if the tree rooted atw is higher
than that rooted atu, and retain the structure at the
root ofA′ if the trees rooted atu andw have the same

height. Now recurse for the left and right subtrees of
A and ofA′.

The change replaces a red and a black edge by one
black edge. It thus preserves the red-black tree prop-
erty of A′. Furthermore, it brings the structure ofA′

one step closer to the structure ofA. After a finite
number of steps,A′ has the same structure asA.

5

Name:

Question 5. (20 points). Given a heap ofn items, each a
real number, the operation LISTM IN(x) enumerates
all items smaller thanx. Give an algorithm that im-
plements LISTM IN and takes time proportional to the
number of items enumerated.

Solution. The algorithm is recursive, starting at the root
of the heap. Ifx is larger than the item at the root then we
output the item and we call the algorithm for the left child
as well as for the right child of the root. If we enumeratek
items, the algorithm examines at most2k + 1 items. This
is less than3k unlessk = 0.

6

