
2 Divide-and-Conquer

We use quicksort as an example for an algorithm that fol-
lows the divide-and-conquer paradigm. It has the repu-
tation of being the fasted comparison-based sorting algo-
rithm. Indeed it is very fast on the average but can be slow
for some input, unless precautions are taken.

The algorithm. Quicksort follows the general paradigm
of divide-and-conquer, which means itdivides the un-
sorted array into two, itrecurses on the two pieces, and it
finally combines the two sorted pieces to obtain the sorted
array. An interesting feature of quicksort is that the divide
step separates small from large items. As a consequence,
combining the sorted pieces happens automatically with-
out doing anything extra.

void QUICKSORT(int ℓ, r)
if ℓ < r then m = SPLIT(ℓ, r);

QUICKSORT(ℓ, m − 1);
QUICKSORT(m + 1, r)

endif.

We assume the items are stored inA[0..n − 1]. The array
is sorted by calling QUICKSORT(0, n − 1).

Splitting. The performance of quicksort depends heav-
ily on the performance of the split operation. The effect of
splitting fromℓ to r is:

• x = A[ℓ] is moved to its correct location atA[m];

• no item inA[ℓ..m − 1] is larger thanx;

• no item inA[m + 1..r] is smaller thanx.

Figure 37 illustrates the process with an example. The
nine items are split by moving a pointeri from left to right
and another pointerj from right to left. The process stops
wheni andj cross. To get splitting right is a bit delicate,
in particular in special cases. Make sure the algorithm is
correct for (i)x is smallest item, (ii)x is largest item, (iii)
all items are the same.

int SPLIT(int ℓ, r)
x = A[ℓ]; i = ℓ; j = r + 1;
repeat repeat i++ until x ≤ A[i];

repeat j-- until x ≥ A[j];
if i < j then SWAP(i, j) endif

until i ≥ j;
SWAP(ℓ, j); return j.

i j

m

ji

1 9

3 5 4 2 41 92 7

5

7

4 2 9 4 2 17 3

3 5 4 2 4 2

Figure 1: First,i and j stop at items 9 and 1, which are then
swapped. Second,i andj cross and the pivot, 7, is swapped with
item 2.

Special cases (i) and (iii) are ok but case (ii) requires a
stopper atA[r + 1]. This stopper must be an item at least
as large asx. If r < n − 1 this stopper is automatically
given. Forr = n − 1, we create such a stopper by setting
A[n] = +∞.

Running time. The actions taken by quicksort can be
expressed using a binary tree: each (internal) node repre-
sents a call and displays the length of the subarray; see
Figure 92. The worst case occurs whenA is already

1

2

1 1

2

5

7

9

1

Figure 2: The total amount of time is proportional to the sum
of lengths, which are the numbers of nodes in the corresponding
subtrees. In the displayed case this sum is 29.

sorted. In this case the tree degenerates to a list without
branching. The sum of lengths can be described by the
following recurrence relation:

T (n) = n + T (n− 1) =
n

∑

i=1

i =

(

n + 1

2

)

.

The running time in the worst case is therefore in O(n2).

In the best case the tree is completely balanced and the
sum of lengths is described by the recurrence relation

T (n) = n + 2 · T

(

n − 1

2

)

.

5



If we assumen = 2k − 1 we can rewrite the relation as

U(k) = (2k
− 1) + 2 · U(k − 1)

= (2k
− 1) + 2(2k−1

− 1) + . . . + 2k−1(2 − 1)

= k · 2k
−

k−1
∑

i=0

2i

= 2k
· k − (2k

− 1)

= (n + 1) · log2(n + 1) − n.

The running time in the best case is therefore in
O(n log n).

Randomization. One of the drawbacks of quicksort, as
described until now, is that it is slow on rather common
almost sorted sequences. The reason are pivots that tend
to create unbalanced splittings. Such pivots tend to oc-
cur in practice more often than one might expect. Hu-
man and often also machine generated data is frequently
biased towards certain distributions (in this case, permuta-
tions), and it has been said that 80% of the time or more,
sorting is done on either already sorted or almost sorted
files. Such situations can often be helped by transferring
the algorithm’s dependence on the input data to internally
made random choices. In this particular case, we use ran-
domization to make the choice of the pivot independent of
the input data. Assume RANDOM(ℓ, r) returns an integer
p ∈ [ℓ, r] with uniform probability:

Prob[RANDOM(ℓ, r) = p] =
1

r − ℓ + 1

for eachℓ ≤ p ≤ r. In other words, eachp ∈ [ℓ, r] is
equally likely. The following algorithm splits the array
with a random pivot:

int RSPLIT(int ℓ, r)
p = RANDOM(ℓ, r); SWAP(ℓ, p);
return SPLIT(ℓ, r).

We get a randomized implementation by substituting
RSPLIT for SPLIT. The behavior of this version of quick-
sort depends onp, which is produced by a random number
generator.

Average analysis. We assume that the items inA[0..n−

1] are pairwise different. The pivot splitsA into

A[0..m − 1], A[m], A[m + 1..n − 1].

By assumption on functionRSPLIT, the probability for
eachm ∈ [0, n − 1] is 1

n
. Therefore the average sum

of array lengths split by QUICKSORT is

T (n) = n +
1

n
·

n−1
∑

m=0

(T (m) + T (n − m − 1)) .

To simplify, we multiply withn and obtain a second rela-
tion by substitutingn − 1 for n:

n · T (n) = n2 + 2 ·

n−1
∑

i=0

T (i), (1)

(n − 1) · T (n − 1) = (n − 1)2 + 2 ·

n−2
∑

i=0

T (i). (2)

Next we subtract (2) from (1), we divide byn(n + 1), we
use repeated substitution to expressT (n) as a sum, and
finally split the sum in two:

T (n)

n + 1
=

T (n− 1)

n
+

2n − 1

n(n + 1)

=
T (n− 2)

n − 1
+

2n − 3

(n − 1)n
+

2n − 1

n(n + 1)

=

n
∑

i=1

2i − 1

i(i + 1)

= 2 ·

n
∑

i=1

1

i + 1
−

n
∑

i=1

1

i(i + 1)
.

Bounding the sums. The second sum is solved directly
by transformation to a telescoping series:

n
∑

i=1

1

i(i + 1)
=

n
∑

i=1

(

1

i
−

1

i + 1

)

= 1 −
1

n + 1
.

The first sum is bounded from above by the integral of1

x

for x ranging from 1 ton + 1; see Figure 3. The sum
of 1

i+1
is the sum of areas of the shaded rectangles, and

because all rectangles lie below the graph of1

x
we get a

bound for the total rectangle area:

n
∑

i=1

1

i + 1
<

∫ n+1

1

dx

x
= ln(n + 1).

6



x

x1/

4321

Figure 3: The areas of the rectangles are the terms in the sum,
and the total rectangle area is bounded by the integral from 1
throughn + 1.

We plug this bound back into the expression for the aver-
age running time:

T (n) < (n + 1) ·

n
∑

i=1

2

i + 1

< 2 · (n + 1) · ln(n + 1)

=
2

log2 e
· (n + 1) · log2(n + 1).

In words, the running time of quicksort in the average case
is only a factor of about2/ log2 e = 1.386 . . . slower than
in the best case. This also implies that the worst case can-
not happen very often, for else the average performance
would be slower.

Stack size. Another drawback of quicksort is the recur-
sion stack, which can reach a size ofΩ(n) entries. This
can be improved by always first sorting the smaller side
and simultaneously removing the tail-recursion:

void QUICKSORT(int ℓ, r)
i = ℓ; j = r;
while i < j do

m = RSPLIT(i, j);
if m − i < j − m
then QUICKSORT(i, m − 1); i = m + 1
else QUICKSORT(m + 1, j); j = m − 1

endif
endwhile.

In each recursive call to QUICKSORT, the length of the ar-
ray is at most half the length of the array in the preceding
call. This implies that at any moment of time the stack
contains no more than1 + log2 n entries. Note that with-
out removal of the tail-recursion, the stack can reachΩ(n)
entries even if the smaller side is sorted first.

Summary. Quicksort incorporates two design tech-
niques to efficiently sortn numbers: divide-and-conquer
for reducing large to small problems and randomization
for avoiding the sensitivity to worst-case inputs. The av-
erage running time of quicksort is in O(n log n) and the
extra amount of memory it requires is in O(log n). For
the deterministic version, the average is over alln! per-
mutations of the input items. For the randomized version
the average is the expected running time forevery input
sequence.

7


