
3 Prune-and-Search

We use two algorithms for selection as examples for the
prune-and-search paradigm. The problem is to find the
i-smallest item in an unsorted collection ofn items. We
could first sort the list and then return the item in thei-th
position, but just finding thei-th item can be done faster
than sorting the entire list. As a warm-up exercise consider
selecting the 1-st or smallest item in the unsorted array
A[1..n].

min = 1;
for j = 2 to n do
if A[j] < A[min] then min = j endif

endfor.

The index of the smallest item is found inn − 1 com-
parisons, which is optimal. Indeed, there is an adversary
argument, that is, with fewer thann − 1 comparisons we
can change the minimum without changing the outcomes
of the comparisons.

Randomized selection. We return to finding thei-
smallest item for a fixed but arbitrary integer1 ≤ i ≤ n,
which we call therank of that item. We can use the split-
ting function of quicksort also for selection. As in quick-
sort, we choose a random pivot and split the array, but we
recurse only for one of the two sides. We invoke the func-
tion with the range of indices of the current subarray and
the rank of the desired item,i. Initially, the range consists
of all indices betweenℓ = 1 andr = n, limits included.

int RSELECT(int ℓ, r, i)
q = RSPLIT(ℓ, r); m = q − ℓ + 1;
if i < m then return RSELECT(ℓ, q − 1, i)
elseif i = m then return q
else return RSELECT(q + 1, r, i − m)

endif.

For small sets, the algorithm is relatively ineffective and
its running time can be improved by switching over to
sorting when the size drops below some constant thresh-
old. On the other hand, each recursive step makes some
progress so that termination is guaranteed even without
special treatment of small sets.

Expected running time. For each1 ≤ m ≤ n, the
probability that the array is split into subarrays of sizes
m− 1 andn−m is 1

n
. For convenience we assume thatn

is even. The expected running time increases with increas-
ing number of items,T (k) ≤ T (m) if k ≤ m. Hence,

T (n) ≤ n +
1

n

n
∑

m=1

max{T (m− 1), T (n− m)}

≤ n +
2

n

n
∑

m= n

2
+1

T (m − 1).

Assume inductively thatT (m) ≤ cm for m < n and
a sufficiently large positive constantc. Such a constant
c can certainly be found form = 1, since for that case
the running time of the algorithm is only a constant. This
establishes the basis of the induction. The case ofn items
reduces to cases ofm < n items for which we can use the
induction hypothesis. We thus get

T (n) ≤ n +
2c

n

n
∑

m= n

2
+1

m − 1

= n + c · (n − 1) −
c

2
·
(n

2
+ 1

)

= n +
3c

4
· n −

3c

2
.

Assumingc ≥ 4 we thus haveT (n) ≤ cn as required.
Note that we just proved that the expected running time of
RSELECT is only a small constant times that ofRSPLIT.
More precisely, that constant factor is no larger than four.

Deterministic selection. The randomized selection al-
gorithm takes time proportional ton2 in the worst case,
for example if each split is as unbalanced as possible. It is
however possible to select in O(n) time even in the worst
case. Themedian of the set plays a special role in this al-
gorithm. It is defined as thei-smallest item wherei = n+1

2

if n is odd andi = n

2
or n+2

2
if n is even. The determinis-

tic algorithm takes five steps to select:

Step 1. Partition then items into
⌈

n

5

⌉

groups of size
at most 5 each.

Step 2. Find the median in each group.

Step 3. Find the median of the medians recursively.

Step 4. Split the array using the median of the medians
as the pivot.

Step 5. Recurse on one side of the pivot.

It is convenient to definek =
⌈

n

5

⌉

and to partition such
that each group consists of items that are multiples ofk
positions apart. This is what is shown in Figure 4 provided
we arrange the items row by row in the array.

8



Figure 4: The 43 items are partitioned into seven groups of 5 and
two groups of 4, all drawn vertically. The shaded items are the
medians and the dark shaded item is the median of medians.

Implementation with insertion sort. We use insertion
sort on each group to determine the medians. Specifically,
we sort the items in positionsℓ, ℓ+k, ℓ+2k, ℓ+3k, ℓ+4k
of arrayA, for eachℓ.

void ISORT(int ℓ, k, n)
j = ℓ + k;
while j ≤ n do i = j;
while i > ℓ and A[i] > A[i − k] do

SWAP(i, i − k); i = i − k
endwhile;
j = j + k

endwhile.

Although insertion sort takes quadratic time in the worst
case, it is very fast for small arrays, as in this applica-
tion. We can now combine the various pieces and write
the selection algorithm in pseudo-code. Starting with the
code for the randomized algorithm, we first remove the
randomization and second add code for Steps 1, 2, and 3.
Recall thati is the rank of the desired item inA[ℓ..r]. Af-
ter sorting the groups, we have their medians arranged in
the middle fifth of the array,A[ℓ+2k..ℓ+3k−1], and we
compute the median of the medians by recursive applica-
tion of the function.

int SELECT(int ℓ, r, i)
k = ⌈(r − ℓ + 1)/5⌉;
for j = 0 to k − 1 do ISORT(ℓ + j, k, r) endfor;
m′ = SELECT(ℓ + 2k, ℓ + 3k − 1, ⌊(k + 1)/2⌋);
SWAP(ℓ, m′); q = SPLIT(ℓ, r); m = q − ℓ + 1;
if i < m then return SELECT(ℓ, q − 1, i)
elseif i = m then return q
else return SELECT(q + 1, r, i − m)

endif.

Observe that the algorithm makes progress as long as there
are at least three items in the set, but we need special treat-
ment of the cases of one or of two items. The role of the
median of medians is to prevent an unbalanced split of

the array so we can safely use the deterministic version of
splitting.

Worst-case running time. To simplify the analysis, we
assume thatn is a multiple of 5 and ignore ceiling and
floor functions. We begin by arguing that the number of
items less than or equal to the median of medians is at least
3n

10
. These are the first three items in the sets with medians

less than or equal to the median of medians. In Figure 4,
these items are highlighted by the box to the left and above
but containing the median of medians. Symmetrically, the
number of items greater than or equal to the median of
medians is at least3n

10
. The first recursion works on a set

of n

5
medians, and the second recursion works on a set of

at most7n

10
items. We have

T (n) ≤ n + T
(n

5

)

+ T

(

7n

10

)

.

We proveT (n) = O(n) by induction assumingT (m) ≤
c · m for m < n andc a large enough constant.

T (n) ≤ n +
c

5
· n +

7c

10
· n

=

(

1 +
9c

10

)

· n.

Assumingc ≥ 10 we haveT (n) ≤ cn, as required. Again
the running time is at most some constant times that of
splitting the array. The constant is about two and a half
times the one for the randomized selection algorithm.

A somewhat subtle issue is the presence of equal items
in the input collection. Such occurrences make the func-
tion SPLIT unpredictable since they could occur on either
side of the pivot. An easy way out of the dilemma is to
make sure that the items that are equal to the pivot are
treated as if they were smaller than the pivot if they occur
in the first half of the array and they are treated as if they
were larger than the pivot if they occur in the second half
of the array.

Summary. The idea of prune-and-search is very similar
to divide-and-conquer, which is perhaps the reason why
some textbooks make no distinction between the two. The
characteristic feature of prune-and-search is that the recur-
sion covers only a constant fraction of the input set. As we
have seen in the analysis, this difference implies a better
running time.

It is interesting to compare the randomized with the de-
terministic version of selection:

9



• the use of randomization leads to a simpler algorithm
but it requires a source of randomness;

• upon repeating the algorithm for the same data, the
deterministic version goes through the exact same
steps while the randomized version does not;

• we analyze the worst-case running time of the deter-
ministic version and the expected running time (for
the worst-case input) of the randomized version.

All three differences are fairly universal and apply to other
algorithms for which we have the choice between a deter-
ministic and a randomized implementation.

10


