
6 Binary Search Trees

One of the purposes of sorting is to facilitate fast search-
ing. However, while a sorted sequence stored in a lin-
ear array is good for searching, it is expensive to add and
delete items. Binary search trees give you the best of both
worlds: fast search and fast update.

Definitions and terminology. We begin with a recursive
definition of the most common type of tree used in algo-
rithms. A (rooted) binary tree is either empty or a node
(theroot) with a binary tree as left subtree and binary tree
as right subtree. We store items in the nodes of the tree.
It is often convenient to say the itemsare the nodes. A
binary tree is sorted if each item is between the smaller or
equal items in the left subtree and the larger or equal items
in the right subtree. For example, the tree illustrated in
Figure 11 is sorted assuming the usual ordering of English
characters. Terms for relations between family members
such aschild, parent, sibling are also used for nodes in a
tree. Every node has one parent, except the root which has
no parent. Aleaf or external node is one without children;
all other nodes areinternal. A nodeν is adescendent of µ

if ν = µ or ν is a descendent of a child ofµ. Symmetri-
cally, µ is anancestor of ν if ν is a descendent ofµ. The
subtree of µ consists of all descendents ofµ. An edge is a
parent-child pair.

mk

l

zv

i

j

db

r

g y

c

Figure 11: The parent, sibling and two children of the dark node
are shaded. The internal nodes are drawn as circles while the
leaves are drawn as squares.

The size of the tree is the number of nodes. A binary
tree isfull if every internal node has two children. Every
full binary tree has one more leaf than internal node. To
count its edges, we can either count 2 for each internal
node or 1 for every node other than the root. Either way,
the total number of edges is one less than the size of the
tree. A path is a sequence of contiguous edges without
repetitions. Usually we only consider paths that descend
or paths that ascend. Thelength of a path is the number

of edges. For every nodeµ, there is a unique path from
the root toµ. The length of that path is thedepth of µ.
Theheight of the tree is the maximum depth of any node.
The path length is the sum of depths over all nodes, and
theexternal path length is the same sum restricted to the
leaves in the tree.

Searching. A binary search tree is a sorted binary tree.
We assume each node is a record storing an item and point-
ers to two children:

struct Node{item info; Node ∗ ℓ, ∗ r};
typedef Node ∗ Tree.

Sometimes it is convenient to also store a pointer to the
parent, but for now we will do without. We can search in
a binary search tree by tracing a path starting at the root.

Node ∗ SEARCH(Tree ̺, item x)
case ̺ = NULL : return NULL ;

x < ̺ → info: return SEARCH(̺ → ℓ, x);
x = ̺ → info: return ̺;
x > ̺ → info: return SEARCH(̺ → r, x)

endcase.

The running time depends on the length of the path, which
is at most the height of the tree. Letn be the size. In the
worst case the tree is a linked list and searching takes time
O(n). In the best case the tree is perfectly balanced and
searching takes only time O(log n).

Insert. To add a new item is similarly straightforward:
follow a path from the root to a leaf and replace that leaf
by a new node storing the item. Figure 12 shows the tree
obtained after addingw to the tree in Figure 11. The run-

c j

yg

r

b d i

v z

l

k m

w

Figure 12: The shaded nodes indicate the path from the root we
traverse when we insertw into the sorted tree.

ning time depends again on the length of the path. If the
insertions come in a random order then the tree is usually

19



close to being perfectly balanced. Indeed, the tree is the
same as the one that arises in the analysis of quicksort.
The expected number of comparisons for a (successful)
search is onen-th of the expected running time of quick-
sort, which is roughly2 lnn.

Delete. The main idea for deleting an item is the same
as for inserting: follow the path from the root to the node
ν that stores the item.

Case 1. ν has no internal node as a child. Removeν.

Case 2. ν has one internal child. Make that child the
child of the parent ofν.

Case 3. ν has two internal children. Find the rightmost
internal node in the left subtree, remove it, and sub-
stitute it forν, as shown in Figure 13.

νν K J

J

Figure 13: StoreJ in ν and delete the node that used to storeJ .

The analysis of the expected search time in a binary search
tree constructed by a random sequence of insertions and
deletions is considerably more challenging than if no dele-
tions are present. Even the definition of a random se-
quence is ambiguous in this case.

Optimal binary search trees. Instead of hoping the in-
cremental construction yields a shallow tree, we can con-
struct the tree that minimizes the search time. We con-
sider the common problem in which items have different
probabilities to be the target of a search. For example,
some words in the English dictionary are more commonly
searched than others and are therefore assigned a higher
probability. Leta1 < a2 < . . . < an be the items and
pi the corresponding probabilities. To simplify the discus-
sion, we only consider successful searches and thus as-
sume

∑n

i=1
pi = 1. The expected number of comparisons

for a successful search in a binary search treeT storing

then items is

1 + C(T ) =
n

∑

i=1

pi · (δi + 1)

= 1 +

n
∑

i=1

pi · δi,

whereδi is the depth of the node that storesai. C(T )
is the weighted path length or the cost of T . We study
the problem of constructing a tree that minimizes the cost.
To develop an example, letn = 3 and p1 = 1

2
, p2 =

1

3
, p3 = 1

6
. Figure 14 shows the five binary trees with

three nodes and states their costs. It can be shown that the

a2

3aa

1a2

a2

a

1

1 a1

a1

a a3

a2 a

3

2

a3

a3 a

Figure 14: There are five different binary trees of three nodes.
From left to right their costs are2

3
, 5

6
, 2

3
, 7

6
, 4

3
. The first tree and

the third tree are both optimal.

number of different binary trees withn nodes is 1

n+1

(

2n

n

)

,
which is exponential inn. This is far too large to try all
possibilities, so we need to look for a more efficient way
to construct an optimum tree.

Dynamic programming. We writeT
j
i for the optimum

weighted binary search tree ofai, ai+1, . . . , aj , C
j
i for its

cost, andpj
i =

∑j

k=i pk for the total probability of the
items in T

j
i . Suppose we know that the optimum tree

stores itemak in its root. Then the left subtree isT k−1

i

and the right subtree isT j
k+1

. The cost of the optimum

tree is thereforeCj
i = Ck−1

i + C
j
k+1

+ p
j
i − pk. Since we

do not know which item is in the root, we try all possibili-
ties and find the minimum:

C
j
i = min

i≤k≤j
{Ck−1

i + C
j
k+1

+ p
j
i − pk}.

This formula can be translated directly into a dynamic pro-
gramming algorithm. We use three two-dimensional ar-
rays, one for the sums of probabilities,p

j
i , one for the costs

of optimum trees,Cj
i , and one for the indices of the items

stored in their roots,Rj
i . We assume that the first array has

already been computed. We initialize the other two arrays
along the main diagonal and add one dummy diagonal for
the cost.

20



for k = 1 to n do
C[k, k − 1] = C[k, k] = 0; R[k, k] = k

endfor;
C[n + 1, n] = 0.

We fill the rest of the two arrays one diagonal at a time.

for ℓ = 2 to n do
for i = 1 to n − ℓ + 1 do

j = i + ℓ − 1; C[i, j] = ∞;
for k = i to j do

cost = C[i, k − 1] + C[k + 1, j]
+ p[i, j] − p[k, k];

if cost < C[i, j] then
C[i, j] = cost; R[i, j] = k

endif
endfor

endfor
endfor.

The main part of the algorithm consists of three nested
loops each iterating through at mostn values. The running
time is therefore in O(n3).

Example. Table 1 shows the partial sums of probabil-
ities for the data in the earlier example. Table 2 shows

6p 1 2 3

1 3 5 6
2 2 3
3 1

Table 1: Six times the partial sums of probabilities used by the
dynamic programming algorithm.

the costs and the indices of the roots of the optimum trees
computed for all contiguous subsequences. The optimum

6C 1 2 3

1 0 2 4
2 0 1
3 0

R 1 2 3

1 1 1 1
2 2 2
3 3

Table 2: Six times the costs and the roots of the optimum trees.

tree can be constructed fromR as follows. The root stores
the item with indexR[1, 3] = 1. The left subtree is there-
fore empty and the right subtree storesa2, a3. The root
of the optimum right subtree stores the item with index
R[2, 3] = 2. Again the left subtree is empty and the right
subtree consists of a single node storinga3.

Improved running time. Notice that the arrayR in Ta-
ble 2 is monotonic, both along rows and along columns.
Indeed it is possible to proveRj−1

i ≤ R
j
i in every row and

R
j
i ≤ R

j
i+1

in every column. We omit the proof and show
how the two inequalities can be used to improve the dy-
namic programming algorithm. Instead of trying all roots
from i throughj we restrict the innermostfor-loop to

for k = R[i, j − 1] to R[i + 1, j] do

The monotonicity property implies that this change does
not alter the result of the algorithm. The running time of a
single iteration of the outerfor-loop is now

Uℓ(n) =
n−ℓ+1
∑

i=1

(Rj
i+1

− R
j−1

i + 1).

Recall thatj = i + ℓ − 1 and note that most terms cancel,
giving

Uℓ(n) = Rn
n−ℓ+2 − Rℓ−1

1 + (n − ℓ + 1)

≤ 2n.

In words, each iteration of the outerfor-loop takes only
time O(n), which implies that the entire algorithm takes
only time O(n2).

21


