
8 Amortized Analysis

Amortization is an analysis technique that can influence
the design of algorithms in a profound way. Later in this
course, we will encounter data structures that owe their
very existence to the insight gained in performance due to
amortized analysis.

Binary counting. We illustrate the idea of amortization
by analyzing the cost of counting in binary. Think of an
integer as a linear array of bits,n =

∑
i≥0 A[i] · 2i. The

following loop keeps incrementing the integer stored inA.

loop i = 0;
while A[i] = 1 do A[i] = 0; i++ endwhile;
A[i] = 1.

forever.

We define thecost of counting as the total number of bit
changes that are needed to increment the number one by
one. What is the cost to count from 0 ton? Figure 28
shows that counting from 0 to 15 requires 26 bit changes.
Sincen takes only1 + ⌊log2 n⌋ bits or positions inA,

0
0
0

0
0

0
0
0
0

0
0
0
0

0

0
0
0
0
0

0
0
0
0
0
0

0
0
0

0

0
0
0

0

0
0
0

0
0

0
0
0

0
0

0

0
0

0

0

0
0

0

0
0

0
0

0
0

0

0
0

0

0
0

1
1 1

1

1 1

1

1
1

1
1
1

1 1

1

1

0 1

1

1
1

1
1

1
1

1

1
1
1

1
1
1
1

5

4

3

2

1

0

Figure 28: The numbers are written vertically from top to bot-
tom. The boxed bits change when the number is incremented.

a single increment does at most2 + log2 n steps. This
implies that the cost of counting from 0 ton is at most
n log2 n+2n. Even though the upper bound of2+ log2 n
is almost tight for the worst single step, we can show that
the total cost is much less thann times that. We do this
with two slightly different amortization methods referred
to as aggregation and accounting.

Aggregation. The aggregation method takes a global
view of the problem. The pattern in Figure 28 suggests
we definebi equal to the number of 1s andti equal to
the number of trailing 1s in the binary notation ofi. Ev-
ery other number has no trailing 1, every other number
of the remaining ones has one trailing 1, etc. Assuming
n = 2k − 1, we therefore have exactlyj − 1 trailing 1s
for 2k−j = (n + 1)/2j integers between 0 andn− 1. The

total number of bit changes is therefore

T (n) =

n−1∑

i=0

(ti + 1) = (n + 1) ·

k∑

j=1

j

2j
.

We use index transformation to show that the sum on the
right is less than 2:

∑

j≥1

j

2j
=

∑

j≥1

j − 1

2j−1

= 2 ·
∑

j≥1

j

2j
−

∑

j≥1

1

2j−1

= 2.

Hence the cost isT (n) < 2(n + 1). Theamortized cost
per operation isT (n)

n
, which is about 2.

Accounting. The idea of the accounting method is to
charge each operation what we think its amortized cost is.
If the amortized cost exceeds the actual cost, then the sur-
plus remains as a credit associated with the data structure.
If the amortized cost is less than the actual cost, the accu-
mulated credit is used to pay for the cost overflow. Define
the amortized cost of a bit change0 → 1 as $2 and that
of 1 → 0 as $0. When we change 0 to 1 we pay $1 for
the actual expense and $1 stays with the bit, which is now
1. This $1 pays for the (later) cost of changing the 1 to 0.
Each increment has amortized cost $2, and together with
the money in the system, this is enough to pay for all the
bit changes. The cost is therefore at most2n.

We see how a little trick, like making the0 → 1 changes
pay for the1 → 0 changes, leads to a very simple analysis
that is even more accurate than the one obtained by aggre-
gation.

Potential functions. We can further formalize the amor-
tized analysis by using a potential function. The idea is
similar to accounting, except there is no explicit credit
saved anywhere. The accumulated credit is an expres-
sion of the well-being or potential of the data structure.
Let ci be the actual cost of thei-th operation andDi the
data structure after thei-th operation. LetΦi = Φ(Di)
be the potential ofDi, which is some numerical value
depending on the concrete application. Then we define
ai = ci + Φi − Φi−1 as theamortized cost of the i-th

26

operation. The sum of amortized costs ofn operations is

n∑

i=1

ai =

n∑

i=1

(ci + Φi − Φi−1)

=

n∑

i=1

ci + Φn − Φ0.

We aim at choosing the potential such thatΦ0 = 0 and
Φn ≥ 0 because then we get

∑
ai ≥

∑
ci. In words,

the sum of amortized costs covers the sum of actual costs.
To apply the method to binary counting we define the po-
tential equal to the number of 1s in the binary notation,
Φi = bi. It follows that

Φi − Φi−1 = bi − bi−1

= (bi−1 − ti−1 + 1) − bi−1

= 1 − ti−1.

The actual cost of thei-th operation isci = 1 + ti−1,
and the amortized cost isai = ci + Φi − Φi−1 = 2.
We haveΦ0 = 0 andΦn ≥ 0 as desired, and therefore∑

ci ≤
∑

ai = 2n, which is consistent with the analysis
of binary counting with the aggregation and the account-
ing methods.

2-3-4 trees. As a more complicated application of amor-
tization we consider 2-3-4 trees and the cost of restructur-
ing them under insertions and deletions. We have seen
2-3-4 trees earlier when we talked about red-black trees.
A set of keys is stored in sorted order in the internal nodes
of a 2-3-4 tree, which is characterized by the following
rules:

(1) each internal node has2 ≤ d ≤ 4 children and stores
d − 1 keys;

(2) all leaves have the same depth.

As for binary trees, being sorted means that the left-to-
right order of the keys is sorted. The only meaningful def-
inition of this ordering is the ordered sequence of the first
subtree followed by the first key stored in the root followed
by the ordered sequence of the second subtree followed by
the second key, etc.

To insert a new key, we attach a new leaf and add the key
to the parentν of that leaf. All is fine unlessν overflows
because it now has five children. If it does, we repair the
violation of Rule (1) by climbing the tree one node at a
time. We call an internal nodenon-saturated if it has fewer
than four children.

Case 1. ν has five children and a non-saturated sibling
to its left or right. Move one child fromν to that
sibling, as in Figure 29.

$1 $0$6 $3

Figure 29: The overflowing node gives one child to a non-
saturated sibling.

Case 2. ν has five children and no non-saturated sib-
ling. Splitν into two nodes and recurse for the parent
of ν, as in Figure 30. Ifν has no parent then create a
new root whose only children are the two nodes ob-
tained fromν.

$0$6

$3 $6

$1

Figure 30: The overflowing node is split into two and the parent
is treated recursively.

Deleting a key is done is a similar fashion, although there
we have to battle with nodesν that have too few children
rather than too many. Letν have only one child. We repair
Rule (1) by adopting a child from a sibling or by merging
ν with a sibling. In the latter case the parent ofν looses a
child and needs to be visited recursively. The two opera-
tions are illustrated in Figures 31 and 32.

$4$3 $1$0

Figure 31: The underflowing node receives one child from a sib-
ling.

Amortized analysis. The worst case for inserting a new
key occurs when all internal nodes are saturated. The in-
sertion then triggers logarithmically many splits. Sym-
metrically, the worst case for a deletion occurs when all

27

$1 $4 $0

$1$0

Figure 32: The underflowing node is merged with a sibling and
the parent is treated recursively.

internal nodes have only two children. The deletion then
triggers logarithmically many mergers. Nevertheless, we
can show that in the amortized sense there are at most a
constant number of split and merge operations per inser-
tion and deletion.

We use the accounting method and store money in the
internal nodes. The best internal nodes have three children
because then they are flexible in both directions. They
require no money, but all other nodes are given a posi-
tive amount to pay for future expenses caused by split and
merge operations. Specifically, we store $4, $1, $0, $3,
$6 in each internal node with 1, 2, 3, 4, 5 children. As il-
lustrated in Figures 29 and 31, an adoption moves money
only from ν to its sibling. The operation keeps the total
amount the same or decreases it, which is even better. As
shown in Figure 30, a split frees up $5 fromν and spends
at most $3 on the parent. The extra $2 pay for the split
operation. Similarly, a merger frees $5 from the two af-
fected nodes and spends at most $3 on the parent. This
is illustrated in Figure 32. An insertion makes an initial
investment of at most $3 to pay for creating a new leaf.
Similarly, a deletion makes an initial investment of at most
$3 for destroying a leaf. If we charge$2 for each split and
each merge operation, the money in the system suffices to
cover the expenses. This implies that forn insertions and
deletions we get a total of at most3n

2 split and merge oper-
ations. In other words, the amortized number of split and
merge operations is at most3

2 .

Recall that there is a one-to-one correspondence be-
tween 2-3-4 tree and red-black trees. We can thus trans-
late the above update procedure and get an algorithm for
red-black trees with an amortized constant restructuring
cost per insertion and deletion. We already proved that for
red-black trees the number of rotations per insertion and
deletion is at most a constant. The above argument im-
plies that also the number of promotions and demotions is
at most a constant, although in the amortized and not in
the worst-case sense as for the rotations.

28

