
9 Splay Trees

Splay trees are similar to red-black trees except that they
guarantee good shape (small height) only on the average.
They are simpler to code than red-black trees and have the
additional advantage of giving faster access to items that
are more frequently searched. The reason for both is that
splay trees are self-adjusting.

Self-adjusting binary search trees. Instead of explic-
itly maintaining the balance using additional information
(such as the color of edges in the red-black tree), splay
trees maintain balance implicitly through a self-adjusting
mechanism. Good shape is a side-effect of the operations
that are applied. These operations are applied whilesplay-
ing a node, which means moving it up to the root of the
tree, as illustrated in Figure 33. A detailed analysis will

2

1

3

4 4

3

1

2 2

3

1

4 1

4

3

2

Figure 33: The node storing 1 is splayed using three single rota-
tions.

reveal that single rotations do not imply good amortized
performance but combinations of single rotations in pairs
do. Aside from double rotations, we useroller-coaster
rotations that compose two single left or two single right
rotations, as shown in Figure 35. The sequence of the two
single rotations is important, namely first the higher then
the lower node. Recall that ZIG(κ) performs a single right
rotation and returns the new root of the rotated subtree.
The roller-coaster rotation to the right is then

Node ∗ ZIGZIG(Node ∗ κ)
return ZIG(ZIG(κ)).

Function ZAGZAG is symmetric, exchanging left and
right, and functions ZIGZAG and ZAGZIG are the two
double rotations already used for red-black trees.

Splay. A splay operation finds an item and uses rotations
to move the corresponding node up to the root position.
Whenever possible, a double rotation or a roller-coaster
rotation is used. We dispense with special cases and show

Function SPLAY for the case the search itemx is less than
the item in the root.

if x < ̺ → info then µ = ̺ → ℓ;
if x < µ → info then

µ → ℓ = SPLAY(µ → ℓ, x);
return ZIGZIG(̺)

elseif x > µ → info then
µ → r = SPLAY(µ → r, x);
return ZIGZAG(̺)

else
return ZIG(̺)

endif.

If x is stored in one of the children of̺ then it is moved
to the root by a single rotation. Otherwise, it is splayed
recursively to the third level and moved to the root either
by a double or a roller-coaster rotation. The number of
rotation depends on the length of the path from̺ to x.
Specifically, if the path isi edges long thenx is splayed in
⌊i/2⌋ double and roller-coaster rotations and zero or one
single rotation. In the worst case, a single splay operation
takes almost as many rotations as there are nodes in the
tree. We will see shortly that the amortized number of
rotations is at most logarithmic in the number of nodes.

Amortized cost. Recall that the amortized cost of an op-
eration is the actual cost minus the cost for work put into
improving the data structure. To analyze the cost, we use a
potential function that measures the well-being of the data
structure. We need definitions:

thesize s(ν) is the number of descendents of nodeν, in-
cludingν,

thebalance β(ν) is twice the floor of the binary logarithm
of the size,β(ν) = 2⌊log2 s(ν)⌋,

thepotential Φ of a tree or a collection of trees is the sum
of balances over all nodes,Φ =

∑
β(ν),

theactual cost ci of the i-th splay operation is 1 plus the
number of single rotations (counting a double or
roller-coaster rotation as two single rotations).

theamortized cost ai of the i-th splay operation isai =
ci + Φi − Φi−1.

We haveΦ0 = 0 for the empty tree andΦi ≥ 0 in general.
This implies that the total actual cost does not exceed the
total amortized cost,

∑
ci =

∑
ai − Φn + Φ0 ≤

∑
ai.

To get a feeling for the potential, we computeΦ for
the two extreme cases. Note first that the integral of the

29



natural logarithm is
∫

lnx = x ln x − x and therefore∫
log2 x = x log2 x − x/ ln 2. In the extreme unbal-

anced case, the balance of thei-th node from the bottom
is 2⌊log2 i⌋ and the potential is

Φ = 2
n∑

i=1

⌊log2 i⌋ = 2n log2 n − O(n).

In the balanced case, we boundΦ from above by2U(n),
whereU(n) = 2U(n

2
)+log2 n. We prove thatU(n) < 2n

for the case whenn = 2k. Consider the perfectly balanced
tree withn leaves. The height of the tree isk = log2 n.
We encode the termlog2 n of the recurrence relation by
drawing the hook-like path from the root to the right child
and then following left edges until we reach the leaf level.
Each internal node encodes one of the recursively surfac-
ing log-terms by a hook-like path starting at that node. The
paths are pairwise edge-disjoint, which implies that their
total length is at most the number of edges in the tree,
which is2n − 2.

Investment. The main part of the amortized time analy-
sis is a detailed study of the three types of rotations: sin-
gle, roller-coaster, and double. We writeβ(ν) for the bal-
ance of a nodeν before the rotation andβ′(ν) for the bal-
ance after the rotation. Letν be the lowest node involved
in the rotation. The goal is to prove that the amortized
cost of a roller-coaster and a double rotation is at most
3[β′(ν) − β(ν)] each, and that of a single rotation is at
most1 + 3[β′(ν) − β(ν)]. Summing these terms over the
rotations of a splay operation gives a telescoping series in
which all terms cancel except the first and the last. To this
we add 1 for the at most one single rotation and another 1
for the constant cost in definition of actual cost.

INVESTMENT LEMMA . The amortized cost of splaying a
nodeν in a tree̺ is at most2 + 3[β(̺) − β(ν)].

Before looking at the details of the three types of rota-
tions, we prove that if two siblings have the same balance
then their common parent has a larger balance. Because
balances are even integers this means that the balance of
the parent exceeds the balance of its children by at least 2.

BALANCE LEMMA . If µ has childrenν, κ and β(ν) =
β(κ) = β thenβ(µ) ≥ β + 2.

PROOF. By definitionβ(ν) = 2⌊log2 s(ν)⌋ and therefore
s(ν) ≥ 2β/2. We haves(µ) = 1+ s(ν)+ s(κ) ≥ 21+β/2,
and thereforeβ(µ) ≥ β + 2.

Single rotation. The amortized cost of a single rotation
shown in Figure 34 is 1 for performing the rotation plus
the change in the potential:

a = 1 + β′(ν) + β′(µ) − β(ν) − β(µ)

≤ 1 + 3[β′(ν) − β(ν)]

becauseβ′(µ) ≤ β(µ) andβ(ν) ≤ β′(ν).

µ

νµ

ν

Figure 34: The size ofµ decreases and that ofν increases from
before to after the rotation.

Roller-coaster rotation. The amortized cost of a roller-
coaster rotation shown in Figure 35 is

a = 2 + β′(ν) + β′(µ) + β′(κ)

− β(ν) − β(µ) − β(κ)

≤ 2 + 2[β′(ν) − β(ν)]

becauseβ′(κ) ≤ β(κ), β′(µ) ≤ β′(ν), andβ(ν) ≤ β(µ).
We distinguish two cases to prove thata is bounded from
above by3[β′(ν) − β(ν)]. In both cases, the drop in the

µ

ν

κ

ν

µ

κµ

κ

ν

Figure 35: If in the middle tree the balance ofν is the same as
the balance ofµ then by the Balance Lemma the balance ofκ is
less than that common balance.

potential pays for the two single rotations.

Case β′(ν) > β(ν). The difference between the balance
of ν before and after the roller-coaster rotation is at
least 2. Hencea ≤ 3[β′(ν) − β(ν)].

Case β′(ν) = β(ν) = β. Then the balances of nodesν
andµ in the middle tree in Figure 35 are also equal
to β. The Balance Lemma thus implies that the bal-
ance ofκ in that middle tree is at mostβ − 2. But
since the balance ofκ after the roller-coaster rotation
is the same as in the middle tree, we haveβ′(κ) < β.
Hencea ≤ 0 = 3[β′(ν) − β(ν)].

30



Double rotation. The amortized cost of a double rota-
tion shown in Figure 36 is

a = 2 + β′(ν) + β′(µ) + β′(κ)

− β(ν) − β(µ) − β(κ)

≤ 2 + [β′(ν) − β(ν)]

becauseβ′(κ) ≤ β(κ) andβ′(µ) ≤ β(µ). We again dis-
tinguish two cases to prove thata is bounded from above
by 3[β′(ν)−β(ν)]. In both cases, the drop in the potential
pays for the two single rotations.

Case β′(ν) > β(ν). The difference is at least 2, which
impliesa ≤ 3[β′(ν) − β(ν)], as before.

Case β′(ν) = β(ν) = β. Thenβ(µ) = β(κ) = β. We
haveβ′(µ) < β′(ν) or β′(κ) < β′(ν) by the Balance
Lemma. Hencea ≤ 0 = 3[β′(ν) − β(ν)].

µ

κ

ν

µ

ν

κ

Figure 36: In a double rotation, the sizes ofµ andκ decrease
from before to after the operation.

Dictionary operations. In summary, we showed that the
amortized cost of splaying a nodeν in a binary search tree
with root̺ is at most1+3[β(̺)−β(ν)]. We now use this
result to show that splay trees have good amortized perfor-
mance for all standard dictionary operations and more.

To access an item we first splay it to the root and return
the root even if it does not containx. The amortized cost
is O(β(̺)).

Given an itemx, we cansplit a splay tree into two,
one containing all items smaller than or equal tox and the
other all items larger thanx, as illustrated in Figure 37.
The amortized cost is the amortized cost for splaying plus

x x

Figure 37: After splayingx to the root, we split the tree by un-
linking the right subtree.

the increase in the potential, which we denote asΦ′ − Φ.
Recall that the potential of a collection of trees is the sum
of the balances of all nodes. Splitting the tree decreases
the number of descendents and therefore the balance of
the root, which implies thatΦ′ − Φ < 0. It follows that
the amortized cost of a split operation is less than that of a
splay operation and therefore in O(β(̺)).

Two splay trees can bejoined into one if all items in
one tree are smaller than all items in the other tree, as il-
lustrated in Figure 38. The cost for splaying the maximum

max max

Figure 38: We first splay the maximum in the tree with the
smaller items and then link the two trees.

in the first tree is O(β(̺1)). The potential increase caused
by linking the two trees is

Φ′ − Φ ≤ 2⌊log2(s(̺1) + s(̺2))⌋

≤ 2 log2 s(̺1) + 2 log2 s(̺2).

The amortized cost of joining is thus O(β(̺1) + β(̺2)).

To insert a new item,x, we split the tree. Ifx is al-
ready in the tree, we undo the split operation by linking
the two trees. Otherwise, we make the two trees the left
and right subtrees of a new node storingx. The amortized
cost for splaying is O(β(̺)). The potential increase caused
by linking is

Φ′ − Φ ≤ 2⌊log2(s(̺1) + s(̺2) + 1)⌋

= β(̺).

The amortized cost of an insertion is thus O(β(̺)).

To delete an item, we splay it to the root, remove the
root, and join the two subtrees. Removingx decreases the
potential, and the amortized cost of joining the two sub-
trees is at most O(β(̺)). This implies that the amortized
cost of a deletion is at most O(β(̺)).

Weighted search. A nice property of splay trees not
shared by most other balanced trees is that they automat-
ically adapt to biased search probabilities. It is plausible
that this would be the case because items that are often
accessed tend to live at or near the root of the tree. The
analysis is somewhat involved and we only state the re-
sult. Each item or node has a positive weight,w(ν) > 0,

31



and we defineW =
∑

ν w(ν). We have the following
generalization of the Investment Lemma, which we state
without proof.

WEIGHTED INVESTMENT LEMMA . The amortized cost
of splaying a nodeν in a tree with total weightW
is at most2 + 3 log2(W/w(ν)).

It can be shown that this result is asymptotically best pos-
sible. In other words, the amortized search time in a splay
tree is at most a constant times the optimum, which is
what we achieve with an optimum weighted binary search
tree. In contrast to splay trees, optimum trees are expen-
sive to construct and they require explicit knowledge of
the weights.

32


