
12 Solving Recurrence Relations

Recurrence relations are perhaps the most important tool
in the analysis of algorithms. We have encountered sev-
eral methods that can sometimes be used to solve such
relations, such as guessing the solution and proving it by
induction, or developing the relation into a sum for which
we find a closed form expression. We now describe a new
method to solve recurrence relations and use it to settle
the remaining open question in the analysis of Fibonacci
heaps.

Annihilation of sequences. Suppose we are given an in-
finite sequence of numbers,A = 〈a0, a1, a2, . . .〉. We can
multiply with a constant, shift to the left and add another
sequence:

kA = 〈ka0, ka1, ka2, . . .〉,
LA = 〈a1, a2, a3, . . .〉,

A + B = 〈a0 + b0, a1 + b1, a2 + b2, . . .〉.

As an example, consider the sequence of powers of two,
ai = 2i. Multiplying with 2 and shifting to the left give
the same result. Therefore,

LA − 2A = 〈0, 0, 0, . . .〉.

We writeLA − 2A = (L − 2)A and think ofL − 2 as an
operator thatannihilates the sequence of powers of 2. In
general,L− k annihilates any sequence of the form〈cki〉.
What doesL − k do to other sequencesA = 〈cℓi〉, when
ℓ 6= k?

(L − k)A = 〈cℓ, cℓ2, cℓ3, . . .〉 − 〈ck, ckℓ, ckℓ2, . . .〉
= (ℓ − k)〈c, cℓ, cℓ2, . . .〉
= (ℓ − k)A.

We see that the operatorL − k annihilates only one type
of sequence and multiplies other similar sequences by a
constant.

Multiple operators. Instead of just one, we can ap-
ply several operators to a sequence. We may multiply
with two constants,k(ℓA) = (kℓ)A, multiply and shift,
L(kA) = k(LA), and shift twice,L(LA) = L2A. For
example,(L − k)(L − ℓ) annihilates all sequences of the
form 〈cki + dℓi〉, where we assumek 6= ℓ. Indeed,L − k
annihilates〈cki〉 and leaves behind〈(ℓ − k)dℓi〉, which is
annihilated byL − ℓ. Furthermore,(L − k)(L − ℓ) anni-
hilates no other sequences. More generally, we have

FACT. (L − k1)(L − k2) . . . (L − kn) annihilates all se-
quences of the form〈c1k

i
1 + c2k

i
2 + . . . + cnki

n〉.

What if k = ℓ? To answer this question, we consider

(L − k)2〈iki〉 = (L − k)〈(i + 1)ki+1 − iki+1〉
= (L − k)〈ki+1〉
= 〈0〉.

More generally, we have

FACT. (L − k)n annihilates all sequences of the form
〈p(i)ki〉, with p(i) a polynomial of degreen − 1.

Since operators annihilate only certain types of sequences,
we can determine the sequence if we know the annihilating
operator. The general method works in five steps:

1. Write down the annihilator for the recurrence.

2. Factor the annihilator.

3. Determine what sequence each factor annihilates.

4. Put the sequences together.

5. Solve for the constants of the solution by using initial
conditions.

Fibonacci numbers. We put the method to a test by con-
sidering the Fibonacci numbers defined recursively as fol-
lows:

F0 = 0,

F1 = 1,

Fj = Fj−1 + Fj−2, for j ≥ 2.

Writing a few of the initial numbers, we get the sequence
〈0, 1, 1, 2, 3, 5, 8, . . .〉. We notice thatL2 − L − 1 annihi-
lates the sequence because

(L2 − L − 1)〈Fj〉 = L2〈Fj〉 − L〈Fj〉 − 〈Fj〉
= 〈Fj+2〉 − 〈Fj+1〉 − 〈Fj〉
= 〈0〉.

If we factor the operator into its roots, we get

L2 − L − 1 = (L − ϕ)(L − ϕ),

where

ϕ =
1 +

√
5

2
= 1.618 . . . ,

ϕ = 1 − ϕ =
1 −

√
5

2
= − 0.618 . . . .
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The first root is known as thegolden ratio because it repre-
sents the aspect ratio of a rectangular piece of paper from
which we may remove a square to leave a smaller rect-
angular piece of the same ratio:ϕ : 1 = 1 : ϕ − 1.
Thus we know that(L − ϕ)(L − ϕ) annihilates〈Fj〉 and
this means that thej-th Fibonacci number is of the form
Fj = cϕj + c ϕj . We get the constant factors from the
initial conditions:

F0 = 0 = c + c,

F1 = 1 = cϕ + c ϕ.

Solving the two linear equations in two unknowns, we get
c = 1/

√
5 andc = −1/

√
5. This implies that

Fj =
1√
5

(

1 +
√

5

2

)j

− 1√
5

(

1 −
√

5

2

)j

.

From this viewpoint, it seems surprising thatFj turns out
to be an integer for allj. Note that|ϕ| > 1 and|ϕ| < 1.
It follows that for growing exponentj, ϕj goes to infinity
andϕj goes to zero. This implies thatFj is approximately
ϕj/

√
5, and that this approximation becomes more and

more accurate asj grows.

Maximum degree. Recall thatD(n) is the maximum
possible degree of any one node in a Fibonacci heap of
sizen. We need two easy facts about the kind of trees that
arise in Fibonacci heaps in order to show thatD(n) is at
most logarithmic inn. Let ν be a node of degreej, and
let µ1, µ2, . . . , µj be its children ordered by the time they
were linked toν.

DEGREELEMMA . The degree ofµi is at leasti − 2.

PROOF. Recall that nodes are linked only during the
deletemin operation. Right before the linking happens, the
two nodes are roots and have the same degree. It follows
that the degree ofµi was at leasti − 1 at the time it was
linked toν. The degree ofµi might have been even higher
because it is possible thatν lost some of the older children
afterµi had been linked. After being linked,µi may have
lost at most one of its children, for else it would have been
cut. Its degree is therefore at leasti − 2, as claimed.

SIZE LEMMA . The number of descendents ofν (includ-
ing ν) is at leastFj+2.

PROOF. Let sj be the minimum number of descendents a
node of degreej can have. We haves0 = 1 ands1 = 2.

For largerj, we getsj from sj−1 by adding the size of a
minimum tree with root degreej−2, which issj−2. Hence
sj = sj−1 + sj−2, which is the same recurrence relation
that defines the Fibonacci numbers. The initial values are
shifted two positions so we getsj = Fj+2, as claimed.

Consider a Fibonacci heap withn nodes and letν be a
node with maximum degreeD = D(n). The Size Lemma
implies n ≥ FD+2. The Fibonacci number with index
D + 2 is roughlyϕD+2/

√
5. BecauseϕD+2 <

√
5, we

have

n ≥ 1√
5
ϕD+2 − 1.

After rearranging the terms and taking the logarithm to the
baseϕ, we get

D ≤ logϕ

√
5(n + 1) − 2.

Recall thatlogϕ x = log2 x/ log2 ϕ and use the calculator

to verify that log2 ϕ = 0.694 . . . > 0.5 and logϕ

√
5 =

1.672 . . . < 2. Hence

D ≤ log2(n + 1)

log2 ϕ
+ logϕ

√
5 − 2

< 2 log2(n + 1).

Non-homogeneous terms. We now return to the anni-
hilation method for solving recurrence relations and con-
sider

aj = aj−1 + aj−2 + 1.

This is similar to the recurrence that defines Fibonacci
numbers and describes the minimum number of nodes in
anAVL tree, also known asheight-balanced tree. It is de-
fined by the requirement that the height of the two sub-
trees of a node differ by at most 1. The smallest tree
of heightj thus consists of the root, a subtree of height
j − 1 and another subtree of heightj − 2. We refer to the
terms involvingai as thehomogeneous terms of the re-
lation and the others as thenon-homogeneous terms. We
know thatL2 − L − 1 annihilates the homogeneous part,
aj = aj−1 + aj−2. If we apply it to the entire relation we
get

(L2 − L − 1)〈aj〉 = 〈aj+2〉 − 〈aj+1〉 − 〈aj〉
= 〈1, 1, . . .〉.

The remaining sequence of 1s is annihilated byL − 1.
In other words,(L − ϕ)(L − ϕ)(L − 1) annihilates〈aj〉
implying thataj = cϕj + c ϕj + c′1j . It remains to find
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the constants, which we get from the boundary conditions
a0 = 1, a1 = 2 anda2 = 4:

c + c + c′ = 1,
ϕc + ϕ c + c′ = 2,

ϕ2c + ϕ2c + c′ = 4.

Noting thatϕ2 = ϕ + 1, ϕ2 = ϕ + 1, andϕ − ϕ =
√

5
we getc = (5 + 2

√
5)/5, c = (5− 2

√
5)/5, andc′ = −1.

The minimum number of nodes of a height-j AVL tree is
therefore roughly the constantc timesϕj . Conversely, the
maximum height of an AVL tree withn = cϕj nodes is
roughly j = logϕ(n/c) = 1.440 . . . · log2 n + O(1). In
words, the height-balancing condition implies logarithmic
height.

Transformations. We extend the set of recurrences we
can solve by employing transformations that produce rela-
tions amenable to the annihilation method. We demon-
strate this by considering mergesort, which is another
divide-and-conquer algorithm that can be used to sort a
list of n items:

Step 1. Recursively sort the left half of the list.

Step 2. Recursively sort the right half of the list.

Step 3. Merge the two sorted lists by simultaneously
scanning both from beginning to end.

The running time is described by the solution to the recur-
rence

T (1) = 1,

T (n) = 2T (n/2) + n.

We have no way to work with terms likeT (n/2) yet.
However, we can transform the recurrence into a more
manageable form. Definingn = 2i andti = T (2i) we
get

t0 = 1,

ti = 2ti−1 + 2i.

The homogeneous part is annihilated byL − 2. Similarly,
non-homogeneous part is annihilated byL − 2. Hence,
(L − 2)2 annihilates the entire relation and we getti =
(ci+c)2i. Expressed in the original notation we thus have
T (n) = (c log2 n + c)n = O(n log n). This result is of
course no surprise and reconfirms what we learned earlier
about sorting.

The Master Theorem. It is sometimes more convenient
to look up the solution to a recurrence relation than play-
ing with different techniques to see whether any one can
make it to yield. Such a cookbook method for recurrence
relations of the form

T (n) = aT (n/b) + f(n)

is provided by the following theorem. Here we assume
thata ≥ 1 andb > 1 are constants and thatf is a well-
behaved positive function.

MASTER THEOREM. Definec = logb a and letε be an
arbitrarily small positive constant. Then

T (n) =







O(nc) if f(n) = O(nc−ε),
O(nc log n) if f(n) = O(nc),
O(f(n)) if f(n) = Ω(nc+ε).

The last of the three cases also requires a usually satis-
fied technical condition, namely thataf(n/b) < δf(n)
for some constantδ strictly less than 1. For example, this
condition is satisfied inT (n) = 2T (n/2) + n2 which im-
pliesT (n) = O(n2).

As another example consider the relationT (n) =
2T (n/2) + n that describes the running time of merge-
sort. We havec = log2 2 = 1 andf(n) = n = O(nc).
The middle case of the Master Theorem applies and we
getT (n) = O(n log n), as before.
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