
14 Shortest Paths

One of the most common operations in graphs is finding
shortest paths between vertices. This section discusses
three algorithms for this problem: breadth-first search
for unweighted graphs, Dijkstra’s algorithm for weighted
graphs, and the Floyd-Warshall algorithm for computing
distances between all pairs of vertices.

Breadth-first search. We call a graphconnected if there
is a path between every pair of vertices. A(connected)
component is a maximal connected subgraph. Breadth-
first search, or BFS, is a way to search a graph. It is sim-
ilar to depth-first search, but while DFS goes as deep as
quickly as possible, BFS is more cautious and explores a
broad neighborhood before venturing deeper. The starting
point is a vertexs. An example is shown in Figure 57. As

e a d

f b c g

2

2 1

1 1

0 1

2

s

Figure 57: A sample graph with eight vertices and ten edges
labeled by breath-first search. The label increases from a vertex
to its successors in the search.

before, we call and edge atree edge if it is traversed by the
algorithm. The tree edges define theBFS tree, which we
can use to redraw the graph in a hierarchical manner, as in
Figure 58. In the case of an undirected graph, no non-tree
edge can connect a vertex to an ancestor in the BFS tree.
Why? We use a queue to turn the idea into an algorithm.

1 1

2

1

2

0

2

1

Figure 58: The tree edges in the redrawing of the graph in Figure
57 are solid, and the non-tree edges are dotted.

First, the graph and the queue are initialized.

forall verticesi do V [i].d = −1 endfor;
V [s].d = 0;
MAKEQUEUE; ENQUEUE(s); SEARCH.

A vertex is processed by adding its unvisited neighbors to
the queue. They will be processed in turn.

void SEARCH

while queue is non-emptydo
i = DEQUEUE;
forall neighborsj of i do
if V [j].d = −1 then

V [j].d = V [i].d + 1; V [j].π = i;
ENQUEUE(j)

endif
endfor

endwhile.

The labelV [i].d assigned to vertexi during the traversal is
the minimum number of edges of any path froms to i. In
other words,V [i].d is the length of the shortest path from
s to i. The running time of BFS for a graph withn vertices
andm edges is O(n + m).

Single-source shortest path. BFS can be used to find
shortest paths in unweighted graphs. We now extend the
algorithm to weighted graphs. AssumeV andE are the
sets of vertices and edges of a simple, undirected graph
with a positive weighting functionw : E → R+. The
length or weight of a path is the sum of the weights of
its edges. Thedistance between two vertices is the length
of the shortest path connecting them. For a given source
s ∈ V , we study the problem of finding the distances and
shortest paths to all other vertices. Figure 59 illustratesthe
problem by showing the shortest paths to the sources. In

5 5 5

44 104
10 10

f b c g

e a s d

6

Figure 59: The bold edges form shortest paths and together the
shortest path tree with roots. It differs by one edge from the
breadth-first tree shown in Figure 57.

the non-degenerate case, in which no two paths have the
same length, the union of all shortest paths tos is a tree,
referred to as theshortest path tree. In the degenerate case,
we can break ties such that the union of paths is a tree.

As before, we grow a tree starting froms. Instead of a
queue, we use a priority queue to determine the next vertex
to be added to the tree. It stores all vertices not yet in the

50



tree and usesV [i].d for the priority of vertexi. First, we
initialize the graph and the priority queue.

V [s].d = 0; V [s].π = −1; INSERT(s);
forall verticesi 6= s do

V [i].d = ∞; INSERT(i)
endfor.

After initialization the priority queue storess with priority
0 and all other vertices with priority∞.

Dijkstra’s algorithm. We mark vertices in the tree to
distinguish them from vertices that are not yet in the tree.
The priority queue stores all unmarked verticesi with pri-
ority equal to the length of the shortest path that goes from
i in one edge to a marked vertex and then tos using only
marked vertices.

while priority queue is non-emptydo
i = EXTRACTM IN; marki;
forall neighborsj of i do
if j is unmarkedthen

V [j].d = min{w(ij) + V [i].d, V [j].d}
endif

endfor
endwhile.

Table 3 illustrates the algorithm by showing the informa-
tion in the priority queue after each iteration of the while-
loop operating on the graph in Figure 59. The mark-

s 0
a ∞ 5 5
b ∞ 10 10 9 9
c ∞ 4
d ∞ 5 5 5
e ∞ ∞ ∞ 10 10 10
f ∞ ∞ ∞ 15 15 15 15
g ∞ ∞ ∞ ∞ 15 15 15 15

Table 3: Each column shows the contents of the priority queue.
Time progresses from left to right.

ing mechanism is not necessary but clarifies the process.
The algorithm performsn EXTRACTM IN operations and
at mostm DECREASEKEY operations. We compare the
running time under three different data structures used to
represent the priority queue. The first is a linear array, as
originally proposed by Dijkstra, the second is a heap, and
the third is a Fibonacci heap. The results are shown in
Table 4. We get the best result with Fibonacci heaps for
which the total running time is O(n logn + m).

array heap F-heap
EXTRACTM INs n2 n log n n log n

DECREASEKEYs m m log m m

Table 4: Running time of Dijkstra’s algorithm for three different
implementations of the priority queue holding the yet unmarked
vertices.

Correctness. It is not entirely obvious that Dijkstra’s al-
gorithm indeed finds the shortest paths tos. To show that
it does, we inductively prove that it maintains the follow-
ing two invariants. At every moment in time

(A) V [j].d is the length of the shortest path fromj to s

that uses only marked vertices other thanj, for every
unmarked vertexj, and

(B) V [i].d is the length of the shortest path fromi to s,
for every marked vertexi.

PROOF. Invariant (A) is true at the beginning of Dijkstra’s
algorithm. To show that it is maintained throughout the
process, we need to make sure that shortest paths are com-
puted correctly. Specifically, if we assume Invariant (B)
for vertexi then the algorithm correctly updates the prior-
ities V [j].d of all neighborsj of i, and no other priorities
change.

i

y

s

Figure 60: The vertexy is the last unmarked vertex on the hypo-
thetically shortest, dashed path that connectsi to s.

At the moment vertexi is marked, it minimizesV [j].d
over all unmarked verticesj. Suppose that, at this mo-
ment,V [i].d is not the length of the shortest path fromi to
s. Because of Invariant (A), there is at least one other un-
marked vertex on the shortest path. Let the last such vertex
bey, as shown in Figure 60. But thenV [y].d < V [i].d,
which is a contradiction to the choice ofi.

We used (B) to prove (A) and (A) to prove (B). To make
sure we did not create a circular argument, we parametrize
the two invariants with the numberk of vertices that are

51



marked and thus belong to the currently constructed por-
tion of the shortest path tree. To prove (Ak) we need (Bk)
and to prove (Bk) we need (Ak−1). Think of the two in-
variants as two recursive functions, and for each pair of
calls, the parameter decreases by one and thus eventually
becomes zero, which is when the argument arrives at the
base case.

All-pairs shortest paths. We can run Dijkstra’s algo-
rithm n times, once for each vertex as the source, and thus
get the distance between every pair of vertices. The run-
ning time is O(n2 log n + nm) which, for dense graphs, is
the same as O(n3). Cubic running time can be achieved
with a much simpler algorithm using the adjacency matrix
to store distances. The idea is to iteraten times, and after
thek-th iteration, the computed distance between vertices
i andj is the length of the shortest path fromi to j that,
other thani andj, contains only vertices of indexk or less.

for k = 1 to n do
for i = 1 to n do
for j = 1 to n do

A[i, j] = min{A[i, j], A[i, k] + A[k, j]}
endfor

endfor
endfor.

The only information needed to updateA[i, j] during the
k-th iteration of the outer for-loop are its old value and
values in thek-th row and thek-th column of the prior
adjacency matrix. This row remains unchanged in this it-
eration and so does this column. We therefore do not have
to use two arrays, writing the new values right into the old
matrix. We illustrate the algorithm by showing the adja-
cency, or distance matrix before the algorithm in Figure
61 and after one iteration in Figure 62.

d

c

b

a

s

e

f

g

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

10

10

4

4

5

4

4

6

5

10

6

10

1054

10

Figure 61: Adjacency, or distance matrix of the graph in Figure
57. All blank entries store∞.

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

s a b c d e f g s a b c d e f g

d

c

b

a

s

e

f

g

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

d

c

b

a

s

e

f

g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

0

0

0

0

0

0

0

0

5 4 5

5

10

10

4

4

5

4

4

6

5

10

6

10

1054

s a b c d e f g s a b c d e f g

d

c

b

a

s

e

f

g

d

c

b

a

s

e

f

g

10 10

1010

9 10

1514

9

10

14

15

9

9

10

15 19 20

15149

14 15 20

191413

13 14 9

1510

9 10

9

10

9 10 15

9 10

9 13 14 9 14

14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

14

14 14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

Figure 62: Matrix after each iteration. Thek-th row and colum
are shaded and the new, improved distances are high-lighted.

The algorithm works for weighted undirected as well
as for weighted directed graphs. Its correctness is easily
verified inductively. The running time is O(n3).

52


