
15 Minimum Spanning Trees

When a graph is connected, we may ask how many edges
we can delete before it stops being connected. Depending
on the edges we remove, this may happen sooner or later.
The slowest strategy is to remove edges until the graph
becomes a tree. Here we study the somewhat more dif-
ficult problem of removing edges with a maximum total
weight. The remaining graph is then a tree with minimum
total weight. Applications that motivate this question can
be found in life support systems modeled as graphs or net-
works, such as telephone, power supply, and sewer sys-
tems.

Free trees. An undirected graph(U, T ) is a free tree if
it is connected and contains no cycle. We could impose a
hierarchy by declaring any one vertex as the root and thus
obtain arooted tree. Here, we have no use for a hierarchi-
cal organization and exclusively deal with free trees. The

g

c

h

f

e

d

a b

i

Figure 63: Adding the edgedg to the tree creates a single cycle
with verticesd, g, h, f, e, a.

number of edges of a free tree is always one less than the
number of vertices. Whenever we add a new edge (con-
necting two old vertices) we create exactly one cycle. This
cycle can be destroyed by deleting any one of its edges,
and we get a new free tree, as in Figure 63. Let(V, E) be
a connected and undirected graph. Asubgraph is another
graph(U, T ) with U ⊆ V andT ⊆ E. It is a spanning
tree if it is a free tree withU = V .

Minimum spanning trees. For the remainder of this
section, we assume that we also have a weighting func-
tion, w : E → R. The weight of subgraph is then the
total weight of its edges,w(T ) =

∑
e∈T

w(e). A mini-
mum spanning tree, or MST of G is a spanning tree that
minimizes the weight. The definitions are illustrated in
Figure 64 which shows a graph of solid edges with a min-
imum spanning tree of bold edges. A generic algorithm
for constructing an MST grows a tree by adding more and

1.9

1.1

1.3

1.2
2.5

1.6

1.5

0.9 1.4 2.8

1.6

1.4

a

d

e

f

1.3

b

1.2

c

g h i

3.6

Figure 64: The bold edges form a spanning tree of weight0.9 +

1.2 + 1.3 + 1.4 + 1.1 + 1.2 + 1.6 + 1.9 = 10.6.

more edges. LetA ⊆ E be a subset of some MST of a
connected graph(V, E). An edgeuv ∈ E − A is safe for
A if A ∪ {uv} is also subset of some MST. The generic
algorithm adds safe edges until it arrives at an MST.

A = ∅;
while (V, A) is not a spanning treedo

find a safe edgeuv; A = A ∪ {uv}
endwhile.

As long asA is a proper subset of an MST there are safe
edges. Specifically, if(V, T ) is an MST andA ⊆ T then
all edges inT − A are safe forA. The algorithm will
therefore succeed in constructing an MST. The only thing
that is not yet clear is how to find safe edges quickly.

Cuts. To develop a mechanism for identifying safe
edges, we define acut, which is a partition of the vertex
set into two complementary sets,V = W ∪̇ (V −W ). It is
crossed by an edgeuv ∈ E if u ∈ W andv ∈ V −W , and
it respects an edge setA if A contains no crossing edge.
The definitions are illustrated in Figure 65.

Figure 65: The vertices inside and outside the shaded regions
form a cut that respects the collection of solid edges. The dotted
edges cross the cut.

53



CUT LEMMA . Let A be subset of an MST and consider a
cutW ∪̇ (V −W ) that respectsA. If uv is a crossing
edge with minimum weight thenuv is safe forA.

PROOF. Consider a minimum spanning tree(V, T ) with
A ⊆ T . If uv ∈ T then we are done. Otherwise, let
T ′ = T ∪ {uv}. BecauseT is a tree, there is a unique
path fromu to v in T . We haveu ∈ W andv ∈ V − W ,
so the path switches at least once between the two sets.
Suppose it switches alongxy, as in Figure 66. Edgexy

u

v

x

y

Figure 66: Addinguv creates a cycle and deletingxy destroys
the cycle.

crosses the cut, and sinceA contains no crossing edges we
havexy 6∈ A. Becauseuv has minimum weight among
crossing edges we havew(uv) ≤ w(xy). DefineT ′′ =
T ′ − {xy}. Then(V, T ′′) is a spanning tree and because

w(T ′′) = w(T ) − w(xy) + w(uv) ≤ w(T )

it is a minimum spanning tree. The claim follows because
A ∪ {uv} ⊆ T ′′.

A typical application of the Cut Lemma takes a compo-
nent of(V, A) and definesW as the set of vertices of that
component. The complementary setV − W contains all
other vertices, and crossing edges connect the component
with its complement.

Prim’s algorithm. Prim’s algorithm chooses safe edges
to grow the tree as a single component from an arbitrary
first vertexs. Similar to Dijkstra’s algorithm, the vertices
that do not yet belong to the tree are stored in a priority
queue. For each vertexi outside the tree, we define its
priority V [i].d equal to the minimum weight of any edge
that connectsi to a vertex in the tree. If there is no such
edge thenV [i].d = ∞. In addition to the priority, we store
the index of the other endpoint of the minimum weight
edge. We first initialize this information.

V [s].d = 0; V [s].π = −1; INSERT(s);
forall verticesi 6= s do

V [i].d = ∞; INSERT(i)
endfor.

The main algorithm expands the tree by one edge at a time.
It uses marks to distinguish vertices in the tree from ver-
tices outside the tree.

while priority queue is non-emptydo
i = EXTRACTM IN; marki;
forall neighborsj of i do
if j is unmarkedand w(ij) < V [j].d then

V [j].d = w(ij); V [j].π = i

endif
endfor

endwhile.

After running the algorithm, the MST can be recovered
from theπ-fields of the vertices. The algorithm together
with its initialization phase performsn = cardV inser-
tions into the priority queue,n extractmin operations, and
at mostm = cardE decreasekey operations. Using the
Fibonacci heap implementation, we get a running time of
O(n logn + m), which is the same as for constructing the
shortest-path tree with Dijkstra’s algorithm.

Kruskal’s algorithm. Kruskal’s algorithm is another
implementation of the generic algorithm. It adds edges in
a sequence of non-decreasing weight. At any moment, the
chosen edges form a collection of trees. These trees merge
to form larger and fewer trees, until they eventually com-
bine into a single tree. The algorithm uses a priority queue
for the edges and a set system for the vertices. In this
context, the term ‘system’ is just another word for ‘set’,
but we will use it exclusively for sets whose elements are
themselves sets. Implementations of the set system will
be discussed in the next lecture. Initially,A = ∅, the pri-
ority queue contains all edges, and the system contains a
singleton set for each vertex,C = {{u} | u ∈ V }. The
algorithm finds an edge with minimum weight that con-
nects two components defined byA. We setW equal to
the vertex set of one component and use the Cut Lemma
to show that this edge is safe forA. The edge is added to
A and the process is repeated. The algorithm halts when
only one tree is left, which is the case whenA contains
n − 1 = cardV − 1 edges.

A = ∅;
while cardA < n − 1 do

uv = EXTRACTM IN;
find P, Q ∈ C with u ∈ P andv ∈ Q;
if P 6= Q then

A = A ∪ {uv}; mergeP andQ

endif
endwhile.

54



The running time is O(m log m) for the priority queue op-
erations plus some time for maintainingC. There are two
operations for the set system, namely finding the set that
contains a given element, and merging two sets into one.

An example. We illustrate Kruskal’s algorithm by ap-
plying it to the weighted graph in Figure 64. The sequence
of edges sorted by weight iscd, fi, fh, ad, ae, hi, de, ef ,
ac, gh, dg, bf , eg, bi, ab. The evolution of the set system

b

ig

c d e

a

f

h

Figure 67: Eight union operations merge the nine singleton sets
into one set.

is illustrated in Figure 67, and the MST computed with
Kruskal’s algorithm and indicated with dotted edges is the
same as in Figure 64. The edgescd, fi, fh, ad, ae are all
added to the tree. The next two edge,hi andde, are not
added because they each have both endpoints in the same
component, and adding either edge would create a cycle.
Edgeef is added to the tree giving rise to a set in the sys-
tem that contains all vertices other thang andb. Edgeac

is not added,gh is added,dg is not, and finallybf is added
to the tree. At this moment the system consists of a single
set that contains all vertices of the graph.

As suggested by Figure 67, the evolution of the con-
struction can be interpreted as a hierarchical clustering of
the vertices. The specific method that corresponds to the
evolution created by Kruskal’s algorithm is referred to as
single-linkage clustering.

55


