15 Minimum Spanning Trees

When a graph is connected, we may ask how many edges

we can delete before it stops being connected. Depending

on the edges we remove, this may happen sooner or later.

The slowest strategy is to remove edges until the graph

becomes a tree. Here we study the somewhat more dif-

ficult problem of removing edges with a maximum total

weight. The remaining graph is then a tree with minimum gjqre 64: The bold edges form a spanning tree of welight-

total weight. Applications that motivate this questioncan 194113 4+14+11+12+ 1.6+ 1.9 = 10.6.

be found in life support systems modeled as graphs or net-

works, such as telephone, power supply, and sewer sys-

tems. more edges. Lefl C F be a subset of some MST of a
connected grapfl, E). An edgeuv € E — A is safe for
Aif AU {uv} is also subset of some MST. The generic

Freetrees. An undirected grapiU, T) is afree tree f algorithm adds safe edges until it arrives at an MST.
it is connected and contains no cycle. We could impose a

hierarchy by declaring any one vertex as the root and thus
obtain arooted tree. Here, we have no use for a hierarchi-
cal organization and exclusively deal with free trees. The

A=10;

whi | e (V, A) is not a spanning trego
find a safe edgev; A =AU {uv}

endwhi | e.

As long asA is a proper subset of an MST there are safe

e edges. Specifically, ifV,T") is an MST and4 C T then

d all edges inT' — A are safe forA. The algorithm will
therefore succeed in constructing an MST. The only thing

that is not yet clear is how to find safe edges quickly.
g h i

Figure 63: Adding the edgéyg to the tree creates a single cycle

with verticesd, g, h, [, ¢, a. Cuts. To develop a mechanism for identifying safe

edges, we define eut, which is a partition of the vertex

: set into two complementary sel,= W U (V —W). Itis
number of edges of a free tree is always one less than thecros@ed by an edgerw ¢ E if w € W ando € V — W, and

number of vertices. Whenever we add a new edge (con—.t respects an edae sefl if A contains no crossing edge
necting two old vertices) we create exactly one cycle. This It FESECLS a ge sekl | ontal ing edge.
The definitions are illustrated in Figure 65.

cycle can be destroyed by deleting any one of its edges,
and we get a new free tree, as in Figure 63. (1&tF) be

a connected and undirected graphsubgraph is another
graph(U,T) with U C V andT C E. Itis aspanning
treeif it is a free tree withU' = V.

Minimum spanning trees. For the remainder of this
section, we assume that we also have a weighting func-
tion, w : £ — R. Theweight of subgraph is then the
total weight of its edgesy(T) = > . w(e). A mini-
mum spanning tree, or MST of G is a spanning tree that
minimizes the weight. The definitions are illustrated in Figure 65: The vertices inside and outside the shaded region
Figure 64 which shows a graph of solid edges with a min- form a cut that respects the collection of solid edges. Thedo
imum spanning tree of bold edges. A generic algorithm ©dges cross the cut.

for constructing an MST grows a tree by adding more and

53

CuT LEMMA. Let A be subset of an MST and consider a
cutW U (V — W) that respectsl. If uv is a crossing
edge with minimum weight themw is safe forA.

PROOF Consider a minimum spanning tré&,7") with
A C T. If ww € T then we are done. Otherwise, let
T = TU{uv}. Becausel is a tree, there is a unique
path fromu tov in T'. We havew € W andv € V — W,

so the path switches at least once between the two sets.

Suppose it switches alongy, as in Figure 66. Edgey

Figure 66: Addinguv creates a cycle and deleting destroys
the cycle.

crosses the cut, and sindecontains no crossing edges we
havexy ¢ A. Becauseiv has minimum weight among
crossing edges we have(uv) < w(zy). DefineT” =
T — {zy}. Then(V,T") is a spanning tree and because

w(T") = w(T) —w(zy) + wluv) < w(T)
it is a minimum spanning tree. The claim follows because
AU{uv} CT".

A typical application of the Cut Lemma takes a compo-
nent of(V, A) and definedV as the set of vertices of that
component. The complementary $ét— W contains all

The main algorithm expands the tree by one edge at atime.
It uses marks to distinguish vertices in the tree from ver-
tices outside the tree.

whi | e priority queue is non-emptgo
i = EXTRACTMIN; marki;
foral | neighborsj ofido
i f jisunmarkedaind w(ij) < V[j].dthen
V{jl.d = w(ij); V]jlm =i
endi f
endf or
endwhi | e.

After running the algorithm, the MST can be recovered
from the 7-fields of the vertices. The algorithm together
with its initialization phase performs = card V' inser-
tions into the priority queue; extractmin operations, and
at mostm = card E decreasekey operations. Using the
Fibonacci heap implementation, we get a running time of
O(nlogn + m), which is the same as for constructing the
shortest-path tree with Dijkstra’s algorithm.

Kruskal's algorithm. Kruskal’s algorithm is another
implementation of the generic algorithm. It adds edges in
a sequence of non-decreasing weight. At any moment, the
chosen edges form a collection of trees. These trees merge
to form larger and fewer trees, until they eventually com-
bine into a single tree. The algorithm uses a priority queue
for the edges and a set system for the vertices. In this
context, the term ‘system’ is just another word for ‘set’,
but we will use it exclusively for sets whose elements are
themselves sets. Implementations of the set system will

other vertices, and crossing edges connect the componenbe discussed in the next lecture. Initially,= 0, the pri-

with its complement.

Prim’salgorithm. Prim’s algorithm chooses safe edges

ority queue contains all edges, and the system contains a
singleton set for each vertek; = {{u} | v € V}. The
algorithm finds an edge with minimum weight that con-
nects two components defined By We setit equal to

to grow the tree as a single component from an arbitrary ihe vertex set of one component and use the Cut Lemma

first vertexs. Similar to Dijkstra’s algorithm, the vertices
that do not yet belong to the tree are stored in a priority
gueue. For each vertexoutside the tree, we define its
priority V'[i].d equal to the minimum weight of any edge
that connects to a vertex in the tree. If there is no such
edge ther/[i].d = co. In addition to the priority, we store
the index of the other endpoint of the minimum weight
edge. We first initialize this information.

V[s].d = 0; V[s].m = —1; INSERT(s);
foral |l verticesi # sdo

V[i].d = oo; INSERT(%)
endf or.

54

to show that this edge is safe fdr The edge is added to

A and the process is repeated. The algorithm halts when
only one tree is left, which is the case whdncontains
n—1=cardV — 1 edges.

A=10;
whil ecardA <n—1do
uv = EXTRACTMIN;
find P,Q € C withu € P andv € Q;
if P#AQthen
A = AU {uv}; mergeP and@
endi f
endwhi | e.

The running time is On log m) for the priority queue op-
erations plus some time for maintaining There are two
operations for the set system, namely finding the set that
contains a given element, and merging two sets into one.

An example. We illustrate Kruskal's algorithm by ap-
plying it to the weighted graph in Figure 64. The sequence
of edges sorted by weight g, fi, fh, ad, ae, hi, de, ef,

ac, gh, dg, bf, eg, bi, ab. The evolution of the set system

3

. »

Figure 67: Eight union operations merge the nine single&is s
into one set.

is illustrated in Figure 67, and the MST computed with
Kruskal's algorithm and indicated with dotted edges is the
same as in Figure 64. The edges fi, fh, ad, ae are all
added to the tree. The next two ed@e,andde, are not
added because they each have both endpoints in the same
component, and adding either edge would create a cycle.
Edgeef is added to the tree giving rise to a set in the sys-
tem that contains all vertices other thamndb. Edgeac

is not addedgh is addedqg is not, and finally f is added

to the tree. At this moment the system consists of a single
set that contains all vertices of the graph.

As suggested by Figure 67, the evolution of the con-
struction can be interpreted as a hierarchical clusterfng o
the vertices. The specific method that corresponds to the
evolution created by Kruskal’s algorithm is referred to as
single-linkage clustering.

55

