16 Union-Find

In this lecture, we present two data structures for the dis-
joint set system problem we encountered in the implemen-
tation of Kruskal’s algorithm for minimum spanning trees.

An interesting feature of the problem is thatoperations

can be executed in a time that is only ever so slightly more SRR L e e
than linear ifm. cset 3|3 3| 88|31 811 3 11 8
Csize 5 4 3
C.next W ° .“/”L cleleloTelo
Abstract datatype. A digoint set systemis an abstract T }
data type that represents a partitichof a set[n] = Figure 68: The system consists of three sets, each nameaby th
{1,2,...,n}. In other words(' is a set of pairwise dis- bold element. Each element stores the name of its set, jpssib
joint subsets ofn] such that the union of all sets @ is the size of its set, and possibly a pointer to the next eleriment
[n]. The data type supports the same set.
set FIND(7): r et ur.n P e Cwithi e P; voi d UNION(i nt P, Q)
voi d UNION(P, Q) 1 € = C —{P,Q}U{PUQ}. i f C[P]l.sze < C[Q].sizethen P « @ endi f;

C|P].size = C[P].size + C|Q].Sze;
In most applications, the sets themselves are irrelevant, second = C[P].next; C[P].next=Q; t = Q;
and it is only important to know when two elements be- whil et #0do
long to the same set and when they belong to different sets Clt].set = P; u=t; t = CJt].next
in the system. For example, Kruskal’s algorithm executes endwhi | e; Cfu].next = second.
the operations only in the following sequence:

In the worst case, a singleNJON operation takes time
©(n). The amortized performance is much better because

P =FIND(2); @ = FIND(7); .
(0: @ G) we spend time only on the elements of the smaller set.

if P+#QthenUNION(P,Q)endif.

WEIGHTED UNION LEMMA. n — 1 UNION operations
This is similar to many everyday situations where it is usu- applied to a system of. singleton sets take time
ally not important to know what it is as long as we recog- O(nlogn).
nize when two are the same and when they are different.

PROOF For an element;, we consider the cardinality of
the set that contains it;(i) = C[FIND (i)].size. Each time
. : , , the name of the set that containshangesg (i) at least
Linked .I|§ts We construct a fa|rly S|mple and reason- . ples. After changing the nameimes, we have (i) >
ably efficient first solution using Ilnkeq lists for the sets. ok 4nd thereforg: < log, n. In other words; can be in
We use a table of length, and for each < [n], we store the smaller set of a NlON operation at mosbg, n times.

tEe nlame of th? iet that contaszurther:more, Wef“rr']k . The claim follows because aNJON operation takes time
the elements of the same set and use the name of the 1irs roportional to the cardinality of the smaller set.

element as the name of the set. Figure 68 shows a sampl
set system and its representation. It is convenient to also

store the size of the set with the first element. Up-trees. Thinking of names as pointers, the above data
To perform a WION operation, we need to change the structure stores each set in a tree of height one. We can

name for all elements in one of the two sets. To save time, use more general trees and get more efficientan op-

we do this only for the smaller set. To merge the two lists erations at the expense of sloweiNB operations. We

without traversing the longer one, we insert the shortér lis consider a class of algorithms with the following common-

between the first two elements of the longer list. alities:

56

e each set is a tree and the name of the set is the index i nt FIND(i nt 4)
of the root; if Clil.p#ithenreturnFIND(C[i].p) endi f;

e FIND traverses a path from a node to the root; returnc.

e UNION links two trees. voi d UNION(i nt i, j)

i f Cli].size < C[j].sizetheni < jendif;
It suffices to store only one pointer per node, namely the Cli).size = Cli].size+ C[j].sze; C[j].p = i.
pointer to the parent. This is why these trees are called
up-trees. It is convenient to let the root point to itself. The size of a subtree increases by at least a factor of 2 from
a node to its parent. The depth of a node can therefore not
exceedlog, n. It follows that AND takes at most time
O(logn). We formulate the result on the height for later
reference.

HEIGHT LEMMA. An up-tree created from singleton
nodes byn — 1 weighted union operations has height
at mostlog, n.

Path compression. We can further improve the time for
FIND operations by linking traversed nodes directly to the
Figure 69: The WiIoON operations create a tree by linking the rgot. This is the idea opath compression. The UNION

root of the first set to the root of the second set. operation is implemented as before and there is only one
modification in the implementation of theNd operation:

1 2 3 4 5 6 7 8 9 10 11 12 i nt FIND(i nt z)
(o] wq [o] wq ‘?ﬁ?@: [T ‘j?%U?‘?, \ if Cli.p #.it hen C[i].p = FIND(C[i].p) endi f ;
‘ ‘ } - : return C[i].p.

well as names of elements and of sets. The white dot repsesent

Figure 70: The table stores indices which function as posrds 203
a pointer to itself. i

Figure 69 shows the up-tree generated by executing the

following eleven WNION operations on a system of twelve éj ? (2

singleton sets2 U3, 4U7,2U4,1U2,4U10, 9U 12, |

12U2,8U11,8U2,5U6, 6 U 1. Figure 70 shows the ® @O
®

embedding of the tree in a table.NLON takes constant
time and FND takes time proportional to the length of the
path, which can be as large as- 1.

204
1u6 @%
5@ ®
406 9 @
@/@ i ® é@
703 e Ty 8/
Weighted union. The running time of IlND can be im- @ @ ; i\@ ®

proved by linking smaller to larger trees. This is the ide OACRONCRO

of weighted union again. Assume a field'[i].p for the @

index of the parent[:].p = i if i is a root), and a field

Cli].sizefor the number of elements in the tree rooted at rigyre 71: The operations and up-trees develop from top to bo
We need the size field only for the roots and we need the om and within each row from left to right.

index to the parent field everywhere except for the roots.

The AND and UNION operations can now be implemented If 7 is not root then the recursion makes it the child of a
as follows: root, which is then returned. ifis a root, it returns itself

57

because in this casg[i].p = i, by convention. Figure 71

Note that if i is a proper descendent of another node

illustrates the algorithm by executing a sequence of eight » at some moment during the execution of the operation

operations U j, which is short for finding the sets that
contain; andj, and performing a ™ION operation if the
sets are different. At the beginning, every element forms
its own one-node tree. With path compression, it is diffi-
cult to imagine that long paths can develop at all.

Iterated logarithm. We will prove shortly that the iter-
ated logarithm is an upper bound on the amortized time
for a FIND operation. We begin by defining the function
from its inverse. Let(0) = 1 andF'(i + 1) = 2, We
haveF(1) = 2, F(2) = 22, andF(3) = 22°. In general,
F(i) is the tower ofi 2s. Table 5 shows the values bf

for the first six arguments. Far< 3, F'is very small, but

i o112} 3 4 5
Fl1]2]4]16] 65536 | 26553

Table 5: Values of-.

for i = 5 it already exceeds the number of atoms in our
universe. Note that the binary logarithm of a tower @s

is atower ofi — 1 2s. Theiterated logarithmis the number

of times we can take the binary logarithm before we drop
down to one or less. In other words, the iterated logarithm
is the inverse of",

min{i | F(i) > n}
min{i | log, log, ...logon < 1},

log*n

where the binary logarithm is takértimes. Asn goes to
infinity, log™ n goes to infinity, but very slowly.

Levels and groups. The analysis of the path com-

sequence thep is a proper descendent ofin T'. In this
case\(u) < A(v).

[
o
OFRPNMNNWWWWWWWWWwwWwwwhh

PNWAUITON©O

Figure 72: A schematic drawing of the tréebetween the col-
umn of level numbers on the left and the column of group num-
bers on the right. The tree is decomposed into five group$ eac
a sequences of contiguous levels.

Define thegroup number of a nodep as the iterated
logarithm of the levelg(y) = log* A(11). Because the
level does not exceed we havey(i) < log” n, for every
nodey in T'. The definition ofg decomposes an up-tree
into at mostl + log™ n groups, as illustrated in Figure 72.
The number of levels in groupis F'(g) — F'(g—1), which
gets large very fast. On the other hand, because levels get
smaller at an exponential rate, the number of nodes in a
group is not much larger than the number of nodes in the
lowest level of that group.

GROUPCENSUSLEMMA. There are at mosin/F(g)
nodes with group number.

pression algorithm uses two Census Lemmas discussed

shortly. LetAq, Ao, ..., A, be a sequence ofldoN and
FIND operations, and IeT’ be the collection of up-trees
we get by executing the sequence, ithout path com-
pression. In other words, theiND operations have no
influence on the trees. THevel A(x) of a nodey is its
height of its subtree ifi"’ plus one.

LEVEL CENSUSLEMMA. There are at most/2¢~!
nodes at levef.

PrRoOOF We use induction to show that a node at letel
has a subtree of at lea3t—! nodes. The claim follows

PrROOF Each node with group numbeghas level between
F(g—1)+1andF(g). We use the Level Census Lemma
to bound their number:

F(g)
Zg: n-(1+i+4+..)
-1 = 9F(g—1)
(=F(g—1)+1
_ 2n
F(g)’
as claimed.

because subtrees of nodes on the same level are disjointAnalysis. The analysis is based on the interplay between

58

the up-trees obtained with and without path compression.

The latter are constructed by the weighted union opera- Summary. We proved an upper bound on the time
tions and eventually form a single tree, which we denote needed form > n UNION and HND operations. The

asT. The former can be obtained from the latter by the
application of path compression. Note thaffinthe level

bound is more than constant per operation, although for
all practical purposes it is constant. The™ n bound can

strictly increases from a node to its parent. Path compres-be improved to an even smaller function, usually referred
sion preserves this property, so levels also increase whento asa(n) or the inverse of the Ackermann function, that

we climb a path in the actual up-trees.

We now show that any sequencerof> n UNION and
FIND operations on a ground set] takes time at most
O(mlog" n) if weighted union and path compression is
used. We can focus on#D because eachNJON opera-
tion takes only constant time. For aN® operation4,, let

X, be the set of nodes along the traversed path. The total

time for executing all lND operations is proportional to
T = Z card X;.
7

Foru € X, letp;(u) be the parent during the execution of
A;. We partitionX; into the topmost two nodes, the nodes
just below boundaries between groups, and the rest:

Y; = {we X;|upisrootor child of roo},
Zi = {peXi=Yilg(p) <g(pin)}
W, = {neXi—Yilg(n) =gpi(n)}

Clearly,cardY; < 2 andcard Z; < log” n. It remains to
bound the total size of th8;, w =). card W;. Instead
of counting, for eacd;, the nodes ifi¥;, we count, for
each node:, the AND operations4; for which . € Wj.
In other words, we count how oftemn can change parent
until its parent has a higher group number thanEach

time n changes parent, the new parent has higher level
than the old parent. If follows that the number of changes

is at mostF'(g(u)) — F(g(un) — 1). The number of nodes
with group numbely is at most2n/F(g) by the Group
Census Lemma. Hence

log™* n
2n
w < — (F(9) —F(g—1
X 7y (F@) - Pl =)
< 2n-(1+log"n).
This implies that

r < 2m+mlog"n+2n(1+log"n)

= O(mlog” n),

assumingn > n. This is an upper bound on the total time
it takes to execute: FIND operations. The amortized cost
per AND operation is therefore at most I0¢™ n), which
for all practical purposes is a constant.

59

goes to infinity even slower than the iterated logarithm.
It can also be proved that (under some mild assumptions)
there is no algorithm that can execute general sequences
of UNION and HND operations in amortized time that is
asymptotically less than(n).

