
16 Union-Find

In this lecture, we present two data structures for the dis-
joint set system problem we encountered in the implemen-
tation of Kruskal’s algorithm for minimum spanning trees.
An interesting feature of the problem is thatm operations
can be executed in a time that is only ever so slightly more
than linear inm.

Abstract data type. A disjoint set system is an abstract
data type that represents a partitionC of a set [n] =
{1, 2, . . . , n}. In other words,C is a set of pairwise dis-
joint subsets of[n] such that the union of all sets inC is
[n]. The data type supports

set FIND(i): return P ∈ C with i ∈ P ;
void UNION(P, Q) : C = C − {P, Q} ∪ {P ∪ Q}.

In most applications, the sets themselves are irrelevant,
and it is only important to know when two elements be-
long to the same set and when they belong to different sets
in the system. For example, Kruskal’s algorithm executes
the operations only in the following sequence:

P = FIND(i); Q = FIND(j);
if P 6= Q then UNION(P, Q) endif.

This is similar to many everyday situations where it is usu-
ally not important to know what it is as long as we recog-
nize when two are the same and when they are different.

Linked lists. We construct a fairly simple and reason-
ably efficient first solution using linked lists for the sets.
We use a table of lengthn, and for eachi ∈ [n], we store
the name of the set that containsi. Furthermore, we link
the elements of the same set and use the name of the first
element as the name of the set. Figure 68 shows a sample
set system and its representation. It is convenient to also
store the size of the set with the first element.

To perform a UNION operation, we need to change the
name for all elements in one of the two sets. To save time,
we do this only for the smaller set. To merge the two lists
without traversing the longer one, we insert the shorter list
between the first two elements of the longer list.

5

4

12 7

9
21

6

10 3 8 11

1 2 3 4 8 105 6 7 9 11 12

3 3 3 8 3 88 11 11 3 11 8

5 4 3C.size

C.set

C.next

Figure 68: The system consists of three sets, each named by the
bold element. Each element stores the name of its set, possibly
the size of its set, and possibly a pointer to the next elementin
the same set.

void UNION(int P, Q)
if C[P ].size < C[Q].size then P ↔ Q endif;
C[P ].size = C[P ].size + C[Q].size;
second = C[P ].next; C[P ].next = Q; t = Q;
while t 6= 0 do

C[t].set = P ; u = t; t = C[t].next
endwhile; C[u].next = second.

In the worst case, a single UNION operation takes time
Θ(n). The amortized performance is much better because
we spend time only on the elements of the smaller set.

WEIGHTED UNION LEMMA . n − 1 UNION operations
applied to a system ofn singleton sets take time
O(n log n).

PROOF. For an element,i, we consider the cardinality of
the set that contains it,σ(i) = C[FIND(i)].size. Each time
the name of the set that containsi changes,σ(i) at least
doubles. After changing the namek times, we haveσ(i) ≥
2k and thereforek ≤ log2 n. In other words,i can be in
the smaller set of a UNION operation at mostlog2 n times.
The claim follows because a UNION operation takes time
proportional to the cardinality of the smaller set.

Up-trees. Thinking of names as pointers, the above data
structure stores each set in a tree of height one. We can
use more general trees and get more efficient UNION op-
erations at the expense of slower FIND operations. We
consider a class of algorithms with the following common-
alities:

56



• each set is a tree and the name of the set is the index
of the root;

• FIND traverses a path from a node to the root;

• UNION links two trees.

It suffices to store only one pointer per node, namely the
pointer to the parent. This is why these trees are called
up-trees. It is convenient to let the root point to itself.

5

6

1 3 4

7

2

11

8

12

9

10

Figure 69: The UNION operations create a tree by linking the
root of the first set to the root of the second set.

1 2 3 4 8 105 6 7 9 11 12

Figure 70: The table stores indices which function as pointers as
well as names of elements and of sets. The white dot represents
a pointer to itself.

Figure 69 shows the up-tree generated by executing the
following eleven UNION operations on a system of twelve
singleton sets:2 ∪ 3, 4 ∪ 7, 2 ∪ 4, 1 ∪ 2, 4 ∪ 10, 9 ∪ 12,
12 ∪ 2, 8 ∪ 11, 8 ∪ 2, 5 ∪ 6, 6 ∪ 1. Figure 70 shows the
embedding of the tree in a table. UNION takes constant
time and FIND takes time proportional to the length of the
path, which can be as large asn − 1.

Weighted union. The running time of FIND can be im-
proved by linking smaller to larger trees. This is the ide
of weighted union again. Assume a fieldC[i].p for the
index of the parent (C[i].p = i if i is a root), and a field
C[i].size for the number of elements in the tree rooted ati.
We need the size field only for the roots and we need the
index to the parent field everywhere except for the roots.
The FIND and UNION operations can now be implemented
as follows:

int FIND(int i)
if C[i].p 6= i then return FIND(C[i].p) endif;
return i.

void UNION(int i, j)
if C[i].size < C[j].size then i ↔ j endif;
C[i].size = C[i].size + C[j].size; C[j].p = i.

The size of a subtree increases by at least a factor of 2 from
a node to its parent. The depth of a node can therefore not
exceedlog2 n. It follows that FIND takes at most time
O(log n). We formulate the result on the height for later
reference.

HEIGHT LEMMA . An up-tree created fromn singleton
nodes byn− 1 weighted union operations has height
at mostlog2 n.

Path compression. We can further improve the time for
FIND operations by linking traversed nodes directly to the
root. This is the idea ofpath compression. The UNION

operation is implemented as before and there is only one
modification in the implementation of the FIND operation:

int FIND(int i)
if C[i].p 6= i then C[i].p = FIND(C[i].p) endif;
return C[i].p.

7

64
75
6

3

2

11

1 1

87

2

61
4232

3

5643

2

7

7

875643

2

5

3

2

6

1

43

2

4 643

2

7

5

6

Figure 71: The operations and up-trees develop from top to bot-
tom and within each row from left to right.

If i is not root then the recursion makes it the child of a
root, which is then returned. Ifi is a root, it returns itself

57



because in this caseC[i].p = i, by convention. Figure 71
illustrates the algorithm by executing a sequence of eight
operationsi ∪ j, which is short for finding the sets that
containi andj, and performing a UNION operation if the
sets are different. At the beginning, every element forms
its own one-node tree. With path compression, it is diffi-
cult to imagine that long paths can develop at all.

Iterated logarithm. We will prove shortly that the iter-
ated logarithm is an upper bound on the amortized time
for a FIND operation. We begin by defining the function
from its inverse. LetF (0) = 1 andF (i + 1) = 2F (i). We
haveF (1) = 2, F (2) = 22, andF (3) = 222

. In general,
F (i) is the tower ofi 2s. Table 5 shows the values ofF
for the first six arguments. Fori ≤ 3, F is very small, but

i 0 1 2 3 4 5
F 1 2 4 16 65, 536 2

65,536

Table 5: Values ofF .

for i = 5 it already exceeds the number of atoms in our
universe. Note that the binary logarithm of a tower ofi 2s
is a tower ofi−1 2s. Theiterated logarithm is the number
of times we can take the binary logarithm before we drop
down to one or less. In other words, the iterated logarithm
is the inverse ofF ,

log∗ n = min{i | F (i) ≥ n}

= min{i | log2 log2 . . . log2 n ≤ 1},

where the binary logarithm is takeni times. Asn goes to
infinity, log∗ n goes to infinity, but very slowly.

Levels and groups. The analysis of the path com-
pression algorithm uses two Census Lemmas discussed
shortly. LetA1, A2, . . . , Am be a sequence of UNION and
FIND operations, and letT be the collection of up-trees
we get by executing the sequence, butwithout path com-
pression. In other words, the FIND operations have no
influence on the trees. Thelevel λ(µ) of a nodeµ is its
height of its subtree inT plus one.

LEVEL CENSUSLEMMA . There are at mostn/2ℓ−1

nodes at levelℓ.

PROOF. We use induction to show that a node at levelℓ
has a subtree of at least2ℓ−1 nodes. The claim follows
because subtrees of nodes on the same level are disjoint.

Note that ifµ is a proper descendent of another node
ν at some moment during the execution of the operation
sequence thenµ is a proper descendent ofν in T . In this
caseλ(µ) < λ(ν).

2
3
4
5
6

1

0
1
2
3
4

9

6

1
1
1
1

5
1
1

17

7

1

18

2
2

1

8

3
3
3
3
3

0

3
3
3
3
3

3

4
4

3

Figure 72: A schematic drawing of the treeT between the col-
umn of level numbers on the left and the column of group num-
bers on the right. The tree is decomposed into five groups, each
a sequences of contiguous levels.

Define thegroup number of a nodeµ as the iterated
logarithm of the level,g(µ) = log∗ λ(µ). Because the
level does not exceedn, we haveg(µ) ≤ log∗ n, for every
nodeµ in T . The definition ofg decomposes an up-tree
into at most1 + log∗ n groups, as illustrated in Figure 72.
The number of levels in groupg is F (g)−F (g−1), which
gets large very fast. On the other hand, because levels get
smaller at an exponential rate, the number of nodes in a
group is not much larger than the number of nodes in the
lowest level of that group.

GROUPCENSUSLEMMA . There are at most2n/F (g)
nodes with group numberg.

PROOF. Each node with group numberg has level between
F (g − 1)+ 1 andF (g). We use the Level Census Lemma
to bound their number:

F (g)∑

ℓ=F (g−1)+1

n

2ℓ−1
≤

n · (1 + 1
2 + 1

4 + . . .)

2F (g−1)

=
2n

F (g)
,

as claimed.

Analysis. The analysis is based on the interplay between
the up-trees obtained with and without path compression.

58



The latter are constructed by the weighted union opera-
tions and eventually form a single tree, which we denote
asT . The former can be obtained from the latter by the
application of path compression. Note that inT , the level
strictly increases from a node to its parent. Path compres-
sion preserves this property, so levels also increase when
we climb a path in the actual up-trees.

We now show that any sequence ofm ≥ n UNION and
FIND operations on a ground set[n] takes time at most
O(m log∗ n) if weighted union and path compression is
used. We can focus on FIND because each UNION opera-
tion takes only constant time. For a FIND operationAi, let
Xi be the set of nodes along the traversed path. The total
time for executing all FIND operations is proportional to

x =
∑

i

cardXi.

Forµ ∈ Xi, letpi(µ) be the parent during the execution of
Ai. We partitionXi into the topmost two nodes, the nodes
just below boundaries between groups, and the rest:

Yi = {µ ∈ Xi | µ is root or child of root},

Zi = {µ ∈ Xi − Yi | g(µ) < g(pi(µ))},

Wi = {µ ∈ Xi − Yi | g(µ) = g(pi(µ))}.

Clearly,cardYi ≤ 2 andcardZi ≤ log∗ n. It remains to
bound the total size of theWi, w =

∑
i cardWi. Instead

of counting, for eachAi, the nodes inWi, we count, for
each nodeµ, the FIND operationsAj for which µ ∈ Wj .
In other words, we count how oftenµ can change parent
until its parent has a higher group number thanµ. Each
time µ changes parent, the new parent has higher level
than the old parent. If follows that the number of changes
is at mostF (g(µ)) − F (g(µ) − 1). The number of nodes
with group numberg is at most2n/F (g) by the Group
Census Lemma. Hence

w ≤

log∗ n∑

g=0

2n

F (g)
· (F (g) − F (g − 1))

≤ 2n · (1 + log∗ n).

This implies that

x ≤ 2m + m log∗ n + 2n(1 + log∗ n)

= O(m log∗ n),

assumingm ≥ n. This is an upper bound on the total time
it takes to executem FIND operations. The amortized cost
per FIND operation is therefore at most O(log∗ n), which
for all practical purposes is a constant.

Summary. We proved an upper bound on the time
needed form ≥ n UNION and FIND operations. The
bound is more than constant per operation, although for
all practical purposes it is constant. Thelog∗ n bound can
be improved to an even smaller function, usually referred
to asα(n) or the inverse of the Ackermann function, that
goes to infinity even slower than the iterated logarithm.
It can also be proved that (under some mild assumptions)
there is no algorithm that can execute general sequences
of UNION and FIND operations in amortized time that is
asymptotically less thanα(n).

59


