
18 Surfaces

Graphs may be drawn in two, three, or higher dimen-
sions, but they are still intrinsically only1-dimensional.
One step up in dimensions, we find surfaces, which are
2-dimensional.

Topological2-manifolds. The simplest kind of surfaces
are the ones that on a small scale look like the real plane.
A spaceM is a 2-manifold if every point x ∈ M is
locally homeomorphic toR2. Specifically, there is an
open neighborhoodN of x and a continuous bijection
h : N → R2 whose inverse is also continuous. Such a
bicontinuous map is called ahomeomorphism. Examples
of 2-manifolds are the open disk and the sphere. The for-
mer is not compact because it has covers that do not have
finite subcovers. Figure 79 shows examples of compact2-
manifolds. If we add the boundary circle to the open disk

Figure 79: Three compact2-manifolds, the open sphere, the
torus, and the double torus.

we get a closed disk which is compact but not every point
is locally homeomorphic toR2. Specifically, a point on
the circle has an open neighborhood homeomorphic to the
closed half-plane,H2 = {(x1, x2) ∈ R2 | x1 ≥ 0}. A
space whose points have open neighborhoods homeomor-
phic to R2 or H2 is called a2-manifolds with boundary;
see Figure 80 for examples. Theboundary is the subset

Figure 80: Three2-manifolds with boundary, the closed disk, the
cylinder, and the Möbius strip.

of points with neighborhoods homeomorphic toH2. It is
a 1-manifold (without boundary), that is, every point is
locally homeomorphic toR. There is only one type of
compact, connected1-manifold, namely the closed curve.
In topology, we do not distinguish spaces that are home-
omorphic to each other. Hence, every closed curve is like
every other one and they are all homeomorphic to the unit
circle,S1 = {x ∈ R2 | ‖x‖ = 1}.

Triangulations. A standard representation of a compact
2-manifold uses triangles that are glued to each other
along shared edges and vertices. A collectionK of tri-
angles, edges, and vertices is atriangulation of a compact
2-manifold if

I. for every triangle inK, its three edges belong toK,
and for every edge inK, its two endpoints are ver-
tices inK;

II. every edge belongs to exactly two triangles and every
vertex belongs to a single ring of triangles.

An example is shown in Figure 81. To simplify language,
we call each element ofK asimplex. If we need to be spe-
cific, we add the dimension, calling a vertex a0-simplex,
an edge a1-simplex, and a triangle a2-simplex. A face
of a simplexτ is a simplexσ ⊆ τ . For example, a trian-
gle has seven faces, its three vertices, its two edges, and
itself. We can now state Condition I more succinctly: if
σ is a face ofτ andτ ∈ K thenσ ∈ K. To talk about

Figure 81: A triangulation of the sphere. The eight triangles are
glued to form the boundary of an octahedron which is homeo-
morphic to the sphere.

the inverse of the face relation, we define thestar of a
simplexσ as the set of simplices that containσ as a face,
Stσ = {τ ∈ K | σ ⊆ τ}. Sometimes we think of the
star as a set of simplices and sometimes as a set of points,
namely the union of interiors of the simplices in the star.
With the latter interpretation, we can now express Condi-
tion II more succinctly: the star of every simplex inK is
homeomorphic toR2.

Data structure. When we store a2-manifold, it is use-
ful to keep track of which side we are facing and where
we are going so that we can move around efficiently.
The core piece of our data structure is a representation
of the symmetry group of a triangle. This group is iso-
morphic to the group of permutations of three elements,
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the vertices of the triangle. We call each permutation
an ordered triangle and use cyclic shifts and transposi-
tions to move between them; see Figure 82. We store
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Figure 82: The symmetry group of the triangle consists of six
ordered versions. Each ordered triangle has a lead vertex and a
lead directed edge.

the entire symmetry group in a single node of an abstract
graph, with arcs between neighboring triangles. Further-
more, we store the vertices in a linear array,V [1..n]. For
each ordered triangle, we store the index of the lead ver-
tex and a pointer to the neighboring triangle that shares
the same directed lead edge. A pointer in this context
is the address of a node together with a three-bit inte-
ger, ι, that identifies the ordered version of the triangle
we refer to. Suppose for example that we identify the
ordered versionsabc, bca, cab, bac, cba, acb of a triangle
with ι = 0, 1, 2, 4, 5, 6, in this sequence. Then we can
move between different ordered versions of the same tri-
angle using the following functions.

ordTri ENEXT(µ, ι)
if ι ≤ 2 then return (µ, (ι + 1) mod 3)

else return (µ, (ι + 1) mod 3 + 4)
endif.

ordTri SYM(µ, ι)
return (µ, (ι + 4) mod 8).

To get the index of the lead vertex, we use the integer func-
tion ORG(µ, ι) and to get the pointer to the neighboring
triangle, we useFNEXT(µ, ι).

Orientability. A 2-manifold is orientable if it has two
distinct sides, that is, if we move around on one we stay
there and never cross over to the other side. The one exam-
ple of a non-orientable manifold we have seen so far is the

Möbious strip in Figure 80. There are also non-orientable,
compact2-manifolds (without boundary), as we can see in
Figure 83. We use the data structure to decide whether or

Figure 83: Two non-orientable, compact2-manifolds, the pro-
jective plane on the left and the Klein bottle on the right.

not a2-manifold is orientable. Note that the cyclic shift
partitions the set of six ordered triangles into twoorien-
tations, each consisting of three triangles. We say two
neighboring triangles areconsistently oriented if they dis-
agree on the direction of the shared edge, as in Figure 81.
Using depth-first search, we visit all triangles and orient
them consistently, if possible. At the first visit, we ori-
ent the triangle consistent with the preceding, neighboring
triangle. At subsequence visits, we check for consistent
orientation.

boolean ISORNTBL(µ, ι)
if µ is unmarkedthen

markµ; choose the orientation that containsι;
bx = ISORNTBL(FNEXT(SYM(µ, ι)));
by = ISORNTBL(FNEXT(ENEXT(SYM(µ, ι))));
bz = ISORNTBL(FNEXT(ENEXT2(SYM(µ, ι))));
return bx and by and bz

else
return [orientation ofµ containsι]

endif.

There are two places where we return a boolean value. At
the second place, it indicates whether or not we have con-
sistent orientation in spite of the visited triangle being ori-
ented prior to the visit. At the first place, the boolean value
indicates whether or not we have found a contradiction to
orientablity so far. A value ofFALSE anywhere during the
computation is propagated to the root of the search tree
telling us that the2-manifold is non-orientable. The run-
ning time is proportional to the number of triangles in the
triangulation of the2-manifold.

Classification. For the sphere and the torus, it is easy
to see how to make them out of a sheet of paper. Twist-
ing the paper gives a non-orientable2-manifold. Perhaps
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most difficult to understand is the projective plane. It is
obtained by gluing each point of the sphere to its antipodal
point. This way, the entire northern hemisphere is glued
to the southern hemisphere. This gives the disk except
that we still need to glue points of the bounding circle (the
equator) in pairs, as shown in the third paper construction
in Figure 84. The Klein bottle is easier to imagine as it
is obtained by twisting the paper just once, same as in the
construction of the Möbius strip.
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Figure 84: From left to right: the sphere, the torus, the projective
plane, and the Klein bottle.

There is a general method here that can be used to clas-
sify the compact2-manifolds. Given two of them, we con-
struct a new one by removing an open disk each and glu-
ing the2-manifolds along the two circles. The result is
called theconnected sum of the two2-manifolds, denoted
asM#N. For example, the double torus is the connected
sum of two tori,T2#T2. We can cut up theg-fold torus
into a flat sheet of paper, and the canonical way of doing
this gives a4g-gon with edges identified in pairs as shown
in Figure 85 on the left. The numberg is called thegenus
of the manifold. Similarly, we can get new non-orientable
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Figure 85: The polygonal schema in standard form for the double
torus and the double Klein bottle.

manifolds from the projective plane,P2, by forming con-
nected sums. Cutting up theg-fold projective plane gives
a2g-gon with edges identified in pairs as shown in Figure
85 on the right. We note that the constructions of the pro-
jective plane and the Klein bottle in Figure 84 are both not
in standard form. A remarkable result which is now more
than a century old is that every compact2-manifold can be
cut up to give a standard polygonal schema. This implies
a classification of the possibilities.

CLASSIFICATION THEOREM. The members of the fami-
lies S2, T2, T2#T2, . . . andP2, P2#P2, . . . are non-
homeomorphic and they exhaust the family of com-
pact2-manifolds.

Euler characteristic. Suppose we are given a triangula-
tion, K, of a compact2-manifold,M. We already know
how to decide whether or notM is orientable. To deter-
mine its type, we just need to find its genus, which we do
by counting simplices. TheEuler characteristic is

χ = #vertices− #edges+ #triangles.

Let us look at the orientable case first. We have a4g-gon
which we triangulate. This is a planar graph withn −
m + ℓ = 2. However,2g edge are counted double, the4g

vertices of the4g-gon are all the same, and the outer face
is not a triangle inK. Hence,

χ = (n − 4g + 1) − (m − 2g) + (ℓ − 1)

= (n − m + ℓ) − 2g

which is equal to2 − 2g. The same analysis can be used
in the non-orientable case in which we getχ = (n− 2g +
1) − (m − g) + (ℓ − 1) = 2 − g. To decide whether
two compact2-manifolds are homeomorphic it suffices to
determine whether they are both orientable or both non-
orientable and, if they are, whether they have the same
Euler characteristic. This can be done in time linear in the
number of simplices in their triangulations.

This result is in sharp contrast to the higher-dimensional
case. The classification of compact3-manifolds has been
a longstanding open problem in Mathematics. Perhaps
the recent proof of the Poincaré conjecture by Perelman
brings us close to a resolution. Beyond three dimensions,
the situation is hopeless, that is, deciding whether or not
two triangulated compact manifolds of dimension four or
higher are homeomorphic is undecidable.
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