18 Surfaces Triangulations. A standard representation of a compact
2-manifold uses triangles that are glued to each other

Graphs may be drawn in two, three, or higher dimen- &long shared edges an_d ve.rti.ces. A_colIectIémf tri-
sions, but they are still intrinsically only-dimensional. ~ a@ngles, edges, and vertices igiangulation of a compact
One step up in dimensions, we find surfaces, which are 2-manifold if

2-dimensional.
I. for every triangle ink, its three edges belong 1@,

) ) ) ) and for every edge ik, its two endpoints are ver-
Topological2-manifolds. The simplest kind of surfaces tices ink:

are the ones that on a small scale look like the real plane.
A spaceM is a 2-manifold if every pointxz € M is
locally homeomorphic tdR2. Specifically, there is an
open neighborhoodv of = and a continuous bijection

h - N — R2whose inverse is also continuous. Such a An example is shown in Figure 81. To simplify language,
bicontinuous map is called@meomorphism. Examples we call each element df asimplex. If we need to be spe-

of 2-manifolds are the open disk and the sphere. The for- cific, we add the dimension, calling a vertex-aimplex,

mer is not compact because it has covers that do not have2n €dge a-simplex, and a triangle a-simplex. Aface

finite subcovers. Figure 79 shows examples of compact ~Of @ simplexr is a simplexs C 7. For example, a trian-
manifolds. If we add the boundary circle to the open disk gle has seven faces, its three vertices, its two edges, and

itself. We can now state Condition | more succinctly: if

o is a face ofr andr € K theno € K. To talk about
Figure 79: Three compa@-manifolds, the open sphere, the

torus, and the double torus.

Il. every edge belongs to exactly two triangles and every
vertex belongs to a single ring of triangles.

we get a closed disk which is compact but not every point
is locally homeomorphic tR2. Specifically, a point on
the circle has an open neighborhood homeomorphic to the

closed haIf-pIangHQ = {(z1,22) € R* | 21 > 0}. A Figure 81: A triangulation of the sphere. The eight triasgiee
space whose points have open neighborhoods homeomorglued to form the boundary of an octahedron which is homeo-
phic toR? or H? is called a2-manifolds with boundary; morphic to the sphere.

see Figure 80 for examples. Theundary is the subset
the inverse of the face relation, we define ttar of a

- simplexco as the set of simplices that contairas a face,
@ & Sto = {r € K | ¢ C 7}. Sometimes we think of the
star as a set of simplices and sometimes as a set of points,

namely the union of interiors of the simplices in the star.
Figure 80: Thre@-manifolds with boundary, the closed disk, the  With the latter interpretation, we can now express Condi-
cylinder, and the Mobius strip. tion 1l more succinctly: the star of every simplex it is

. . . . , homeomorphic tdR2.
of points with neighborhoods homeomorphicHg. It is

a 1-manifold (without boundary), that is, every point is

locally homeomorphic taR. There is only one type of  Data structure. When we store &-manifold, it is use-
compact, connectetmanifold, namely the closed curve. ful to keep track of which side we are facing and where
In topology, we do not distinguish spaces that are home- we are going so that we can move around efficiently.
omorphic to each other. Hence, every closed curve is like The core piece of our data structure is a representation
every other one and they are all homeomorphic to the unit of the symmetry group of a triangle. This group is iso-
circle,S' = {z e R? | ||lz| = 1}. morphic to the group of permutations of three elements,
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the vertices of the triangle. We call each permutation Mobious strip in Figure 80. There are also non-orientable,
an ordered triangle and use cyclic shifts and transposi- compac-manifolds (without boundary), as we can seein
tions to move between them; see Figure 82. We store Figure 83. We use the data structure to decide whether or

ENEXT

_A-A=A ) 2 2

c a b

T e Figure 83: Two non-orientable, compatmanifolds, the pro-
Q O Q jective plane on the left and the Klein bottle on the right.
b a c b a c
not a2-manifold is orientable. Note that the cyclic shift

Figure 82: The symmetry group of the triangle consists of six partitions the set of six ordered triangles into taen-

ordered versions. Each ordered triangle has a lead vertbaan (lONS, €ach consisting of three triangles. We say two
lead directed edge. neighboring triangles areonsistently oriented if they dis-

agree on the direction of the shared edge, as in Figure 81.
the entire symmetry group in a single node of an abstract Using depth-first search, we visit all triangles and orient
graph, with arcs between neighboring triangles. Further- them consistently, if possible. At the first visit, we ori-
more, we store the vertices in a linear arriyj]..n]. For ~ entthetriangle consistent with the preceding, neighlgprin
each ordered triangle, we store the index of the lead ver- friangle. At subsequence visits, we check for consistent
tex and a pointer to the neighboring triangle that shares orientation.
the same directed lead edge. A pointer in this context

is the address of a node together with a three-bit inte- ~ bool ean ISORNTBL(x, ¢)
ger, ¢, that identifies the ordered version of the triangle i f pis unmarked hen
we refer to. Suppose for example that we identify the marku; choose the orientation that contains
ordered versiongbc, bea, cab, bac, cba, ach of a triangle bz = ISORNTBL(FNEXT(SYM(p, 1)));
with ¢ = 0,1,2,4,5,6, in this sequence. Then we can by = ISORNTBL(FNEXT(ENEXT(SYM(p, ¢))));
move between different ordered versions of the same tri- b = ISORNTBL(FNEXT(ENEXT*(SYM(u,1))));
angle using the following functions. returnb, and b, and b,
el se
ordTri ENEXT(u, ¢) re_t ur n [orientation ofu contains]
if.o<2thenreturn (g (c+1)mod 3) endif.
el sereturn (u, (¢t +1) mod 3+ 4)
endi f . There are two places where we return a boolean value. At

the second place, it indicates whether or not we have con-
sistent orientation in spite of the visited triangle beimg o
ented prior to the visit. At the first place, the boolean value
indicates whether or not we have found a contradiction to
orientablity so far. A value ofALSE anywhere during the

To get the index of the lead vertex, we use the integer func- computation is propagated to the root of the search tree
tion ORG(,¢) and to get the pointer to the neighboring telling us that the2-manifold is non-orientable. The run-
triangle, we USENEXT(, ¢). ning time is proportional to the number of triangles in the

triangulation of the2-manifold.

ordTri syM(u,e)
return (i, (¢ +4) mod8).

Orientability. A 2-manifold is orientable if it has two

distinct sides, that is, if we move around on one we stay Classification. For the sphere and the torus, it is easy
there and never cross over to the other side. The one exam+io see how to make them out of a sheet of paper. Twist-
ple of a non-orientable manifold we have seen so far is the ing the paper gives a non-oriental2lenanifold. Perhaps
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most difficult to understand is the projective plane. It is
obtained by gluing each point of the sphere to its antipodal
point. This way, the entire northern hemisphere is glued

CLASSIFICATION THEOREM. The members of the fami-
lies S2, T2, T?#T2, ... andP?, P24P2, . .. are non-
homeomorphic and they exhaust the family of com-

to the southern hemisphere. This gives the disk except pact2-manifolds.
that we still need to glue points of the bounding circle (the

equator) in pairs, as shown in the third paper construction . ) ,
in Figure 84. The Klein bottle is easier to imagine as it EUler characteristic. Suppose we are given a triangula-

is obtained by twisting the paper just once, same as in the ioN: £, of @ compace-manifold, M. We already know
construction of the Mobius strip. how to decide whether or n®{l is orientable. To deter-

mine its type, we just need to find its genus, which we do
b a a a
a a a a

by counting simplices. ThEuler characteristic is
Figure 84: From left to right: the sphere, the torus, the grtiye
plane, and the Klein bottle.

X #vertices— #edgest #triangles

Let us look at the orientable case first. We haviaon
which we triangulate. This is a planar graph with—

m + ¢ = 2. However2g edge are counted double, the
vertices of thelg-gon are all the same, and the outer face
is not a triangle ink. Hence,

There is a general method here that can be used to clas-
sify the compac®-manifolds. Given two of them, we con-
struct a new one by removing an open disk each and glu-
ing the 2-manifolds along the two circles. The resultis which is equal t® — 2¢. The same analysis can be used
called theconnected sum of the two2-manifolds, denoted  jn the non-orientable case in which we get (n—2g+
asM#N. For example, the double torus is the connected 1) — (;, — ¢) + (¢ — 1) = 2 — g. To decide whether
sum of two tori,T*#T>. We can cut up thg-fold torus  two compac®-manifolds are homeomorphic it suffices to
into a flat sheet of paper, and the canonical way of doing determine whether they are both orientable or both non-
this gives alg-gon with edges identified in pairs as shown grientable and, if they are, whether they have the same

in Figure 85 on the left. The numberis called thegenus Euler characteristic. This can be done in time linear in the
of the manifold. Similarly, we can get new non-orientable number of simplices in their triangulations.

(n—4g+1)—(m—2g9)+ (¢ —1)
(n—m+/1)—2g

X

This resultis in sharp contrast to the higher-dimensional
case. The classification of compaemanifolds has been
a longstanding open problem in Mathematics. Perhaps
the recent proof of the Poincaré conjecture by Perelman
brings us close to a resolution. Beyond three dimensions,
the situation is hopeless, that is, deciding whether or not
two triangulated compact manifolds of dimension four or
higher are homeomorphic is undecidable.
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Figure 85: The polygonal schema in standard form for the loub
torus and the double Klein bottle.

manifolds from the projective plan®2, by forming con-
nected sums. Cutting up thefold projective plane gives
a2g-gon with edges identified in pairs as shown in Figure
85 on the right. We note that the constructions of the pro-
jective plane and the Klein bottle in Figure 84 are both not
in standard form. A remarkable result which is now more
than a century old is that every compaetanifold can be
cut up to give a standard polygonal schema. This implies
a classification of the possibilities.
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