19 Homology spanning tree while the cyclomatic number is independent
of that choice.

In topology, the main focus is not on geometric size but

rather on how a space is connected. The most elementarygimpjicial complexes. We begin with a combinatorial
notion distinguishes whether we can go from one place representation of a topological space. Using a finite
to another. If not then there is a gap we cannot bridge. ground set of verticesy’, we call a subset C V an

Next we would ask whether there is a loop going around 4pgract simplex. Its dimension is one less than the car-
an obstacle, or whether there is a void missing in the SPace.ginality, dim o — lo| — 1. Afaceis a subset C o.

Homology is a formalization of these ideas. It gives a way

to define and count holes using algebra. DEFINITION. An abstract simplicial complex overV is a
systemK C 2" suchthav € K andr C o implies

The cyclomatic number of a graph. To motivate the TEK.

more general concepts, consider a connected gréph, ! : _ . . .
with n vertices andn edges. A spanning tree has— 1 Thedimension of X' is the largest dimension of any sim-
edges and every additional edge forms a unique cycle to-Plexin K. A graph is thus d-dimensional abstract sim-

gether with edges in this tree; see Figure 86. Every other plicial complex. Just like for graphs, we sometimes think
of K as an abstract structure and at other times as a geo-

metric object consisting of geometric simplices. In the lat
ter interpretation, we glue the simplices along sharedsace
to form ageometric realization of K, denoted a$K |. We
sayK triangulatesa spac«X if there is a homeomorphism
h : X — |K|. We have seei- and2-dimensional exam-
ples in the preceding sections. Thaundary of a simplex

o is the collection of co-dimension one faces,

do = {rCo|dim7=dimo—1}.
Figure 86: A tree with three additional edges defining theesam If dim o = p then the boundary consistsp#-1 (p — 1)-
number of cycles. simplices. Everyp — 1)-simplex hap (p — 2)-simplices
in its own boundary. This way we gép + 1)p (p — 2)-
cycle inG can be written as a sum of these— (n — 1) simplices, counting each of thg*}) = (*1%) (p — 2)-
cycles. To make this concrete, we defineylleas a sub- ~ dimensional faces af twice.

set of the edges such that every vertex belongs to an even
number of these edges. A cycle does not n_eeq to be CON-=pain complexes. We now generalize the cycles in
nected. Thesum of two cycles is the symmetric difference

f the t ¢ h that multile ed h oth rgraphstoCyclesofdi1’“ferentdimensi0nsin simplicial com-
otthe two sets such that multiple edges erase each othe plexes. Ap-chain is a set ofp-simplices inK. Thesum
in pairs. Clearly, the sum of two cycles is again a cy-

e E | in G tai " b of two p-chains is their symmetric difference. We usually
cle. Every cycle, in G contains some positive number o 1 cets as formal sums,
of edges that do not belong to the spanning tree. Call-

ing these edges, e, ..., e and the cycles they define c = a101+ a0+ ...+ anon;
V1,72, - - - Yk, WE Claim that d = boy +byoy—+...+byo,
Y= At % where ther, andb; are eithel) or 1. Addition can then be

. L done using modula arithmetic,
To see this assume that= v + 92 +. . . + % is different 9

from~. Theny+-¢ is again a cycle but it contains no edges c+od = (a1 42b1)o1+ ...+ (an +2 by)on,

that do not belong to the spanning tree. Heficed = ()

and thereforey = ¢, as claimed. This implies that the wherea; +- b; is the exclusive or operation. We simplify
m—n+ 1 cycles form a basis of the group of cycles which notation by dropping the subscript but note that the two
motivates us to calln — n + 1 the cyclomatic number of plus signs are different, one modulo two and the other a
the graph. Note that the basis depends on the choice offormal notation separating elements in a set. pfuhains
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form a group, which we denote &§,, +) or simply C,,.

Note that the boundary of gsimplex is a(p — 1)-chain,

an element of,_;. Extending this concept linearly, we
define the boundary of g-chain as the sum of boundaries
of its simplicespc = a;001+. . .+a,d0,. The boundary

is thus a map between chain groups and we sometimes
write the dimension as index for clarity,

Op:Cp— Cpr. Figure 88: Thel-cyclesy andé are notl-boundaries. Adding

. . . the 1-boundarye to § gives al-cycle homologous té.
It is a homomorphism sinc&, (c + d) = J,c + d,d. The
infinite sequence of chain groups connected by boundary
homomorphisms is called thehain complex of K. All asc ~ ¢’. Note thatlc] = [¢/| whenever ~ . Also note

groups of dimension smaller tharand larger than the di-  that[c + d] = [/ + d'] whenever ~ ¢’ andd ~ d'. We
mension of A" are trivial. It is convenient to keep them  se this as a definition of addition for homology classes, so

around to avoid special cases at the endsp-eycle is a we again have a group. For example, thet homology
p-chain whose boundary is zero. The sum of woycles  group of the torus consists of four elemeni, = B,

is again ap-cycle so we get a subgroug, C C,. A (V] =~+Bu1,[0] =5+ By, and[y +d] = v+ +By. We
p-boundaryis ap-chain that is the boundary of(a + 1)- often draw the elements as the corners of a cube of some

chain. The sum of twp-boundaries is againaboundary  dimension; see Figure 89. If the dimensiomithen it has
so we get another subgroup, C C,, Taking the bound-

ary twice in a row gives zero for every simplex and thus vl [y+3]
for every chain, that is(0,(9,+1d) = 0. It follows that
B, is a subgroup oZ,. We can therefore draw the chain

complex as in Figure 87.
o1 vl

Figure 89: The four homology classesldf are generated by
two classes]y] and[d].

Opa 27 corners. The dimension is also the number of classes
needed to generate the group, the size of the basis. For
thep-th homology group, this number i, = rank H, =

Figure 87: The chain complex consisting of a linear sequence 10g [Hy|, thep-th Betti number. For the torus we have
of chain, cycle, and boundary groups connected by homomor-

phisms. By = 1
B = 2
62 = 1a

Homology groups. We would like to talk about cycles o

but ignore the boundaries since they do not go around a@nd g, = 0 forall p # 0,1,2. Every(-chain is a0-
hole. At the same time, we would like to consider two Cycle. Two0-cycles are homologous if they are both the
cycles the same if they differ by a boundary. See Figure SUM of an even number or both of an odd number of ver-
88 for a fewl-cycles, some of which areboundariesand ~ tices. Hencej, = log, 2 = 1. We have seen the reason
some of which are not. This is achieved by taking the for /1 = 2 before. Finally, there are only tw-cycles,
quotient of the cycle group and the boundary group. The namely0 and the set of all triangles. The latter is not a

result is thep-th homology group, boundary, hencg, = log, 2 = 1.
Hy = Z,/B,. .
Boundary matrices. To compute homology groups and
Its elements are of the forfa] = ¢ + B,,, wherec is ap- Betti numbers, we use a matrix representation of the sim-
cycle. [¢] is called ahomology class, ¢ is arepresentative plicial complex. Specifically, we store the boundary ho-

of [¢], and any two cycles if] are homologous denoted momorphism for each dimension, settiig[i, j] = 1 if
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thei-th (p — 1)-simplex is in the boundary of thgth p-
simplex, and, [i, j| = 0, otherwise. For example, if the
complex consists of all faces of the tetrahedron, then the
boundary matrices are

d = [0 0 0 0];
1110 0 0
5 — 1001 10|
Lo 010101/
000 1 0 11
1 1 0 0
1 010
01 1 0
0 = 1 00 11
01 0 1
|0 0 1 1
(1
1
83_1
|1

Given ap-chain as a column vectos;, its boundary is
computed by matrix multiplication),v. The result is a
combination of columns in thg-th boundary matrix, as
specified byv. Thus,v is ap-cycle iff 9,v = 0 andv is a
p-boundary iff there isx such that, 1 u = v.

Matrix reduction. Letting n, be the number ofp-
simplices inkK’, we note that it is also the rank of theth
chain group,n, = rankC,. The p-th boundary matrix
thus hass,_; rows andn,, columns. To figure the sizes of

the cycle and boundary groups, and thus of the homology

groups, we reduce the matrix to normal form, as shown
in Figure 90. The algorithm of choice uses column and

——rankCp ———
———rankZ, ———

rankBp -1

rankCp-1

Figure 90: Thep-th boundary matrix in normal form. The entries
in the shaded portion of the diagonal drand all other entries
areO0.

row operations similar to Gaussian elimination for solv-
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ing a linear system. We write it recursively, calling it with
m = 1.

voi d REDUCE(m)

i f 3k,1> mwith 9y[k,1] =1then
exchange rows: andk and columnsn andi;
fori=m+1ton,_;do

if Opli,m] =1then
add rowm to rowi
endi f
endf or;
for j=m+1ton,do
if 0p,lm,j] =1then
add columnm to columnj
endi f
endf or;
REDUCE(m + 1)
endi f .

For each recursive call, we have at most a linear number
of row and column operations. The total running time is
therefore at most cubic in the number of simplices. Figure
90 shows how we interpret the result. Specifically, the
number of zero columns is the rank of the cycle group,
Z,, and the number dfs in the diagonal is the rank of the
boundary groupB,,_:. The Betti number is the difference,

By

taking the rank of the boundary group from the reduced
matrix one dimension up. Working on our example, we
get the following reduced matrices.

rank Z, — rank By,

d = [0 0 0 0];
(1. 0 0 0 0 0
5 010000
L= 00100 0]
|00 0000
1 0 0 0
01 0 0
0010
0 = 00 0 0]
00 0 0
|00 00
1
0
9y = 0
|0

Writing z, = rank Z,, andb, = rank B,, we getzy = 4
from the zeroth andy = 3 from the first reduced bound-
ary matrix. Hence3y, = zy = by = 1. Furthermore,



z1 = 3andb; = 3giving 51 = 0, 2o = 1 andby = 1
giving 82 = 0, andzz = 0 giving 53 = 0. These are the
Betti numbers of the closed ball.

Euler-Poincaré Theorem. TheEuler characteristicof a
simplicial complex is the alternating sum of simplex num-
bers,

X = Z(_l)p”p-

p=>0

Recalling thatn, is the rank of thep-th chain group and
that it equals the rank of theth cycle group plus the rank
of the (p — 1)-st boundary group, we get

X = Z(_l)p(zp + bp—1)

p=>0

= D (“P(z —by),

p=>0

which is the same as the alternating sum of Betti num-
bers. To appreciate the beauty of this result, we need to
know that the Betti numbers do not depend on the trian-
gulation chosen for the space. The proof of this property
is technical and omitted. This now implies that the Euler

characteristic is an invariant of the space, same as the Bett
numbers.

EULER-POINCARE THEOREM. x = > (—1)?f3,.
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