
21 Delaunay Triangulations

The triangulations constructing by plane-sweep are typi-
cally of inferior quality, that is, there are many long and
skinny triangles and therefore many small and many large
angles. We study Delaunay triangulations which distin-
guish themselves from all other triangulations by a num-
ber of nice properties, including they have fast algorithms
and they avoid small angles to the extent possible.

Plane-sweep versus Delaunay triangulation. Figures
97 and 98 show two triangulations of the same set of
points, one constructed by plane-sweep and the other the
Delaunay triangulation. The angles in the Delaunay trian-

Figure 97: Triangulation constructed by plane-sweep. Points on
the same vertical line are processed from bottom to top.

gulation seem consistently larger than those in the plane-
sweep triangulation. This is not a coincidence and it can
be proved that the Delaunay triangulation maximizes the
minimum angle for every input set. Both triangulations

Figure 98: Delaunay triangulation of the same twenty-one points
triangulated in Figure 97.

contain the edges that bound the convex hull of the input
set.

Voronoi diagram. We introduce the Delaunay triangu-
lation indirectly, by first defining a particular decomposi-
tion of the plane into regions, one per point in the finite
data setS. The region of the pointu in S contains all
pointsx in the plane that are at least as close tou as to any
other point inS, that is,

Vu = {x ∈ R
2 | ‖x − u‖ ≤ ‖x − v‖, v ∈ S},

where‖x − u‖ = [(x1 − u1)
2 +(x2 − u2)

2]1/2 is the Eu-
clidean distance between the pointsx andu. We refer to
Vu as theVoronoi regionof u. It is closed and its bound-
ary consists ofVoronoi edgeswhichVu shares with neigh-
boring Voronoi regions. A Voronoi edge ends inVoronoi
verticeswhich it shares with other Voronoi edges. The
Voronoi diagramof S is the collection of Voronoi regions,
edges and vertices. Figure 99 illustrates the definitions.
Let n be the number of points inS. We list some of the
properties that will be important later.

Figure 99: The (solid) Voronoi diagram drawn above the (dot-
ted) Delaunay triangulation of the same twenty-one points trian-
gulated in Figures 97 and 98. Some of the Voronoi edges are too
far out to fit into the picture.

• Each Voronoi region is a convex polygon constructed
as the intersection ofn − 1 closed half-planes.

• The Voronoi regionVu is bounded (finite) iffu lies in
the interior of the convex hull ofS.

• The Voronoi regions have pairwise disjoint interiors
and together cover the entire plane.

Delaunay triangulation. We define theDelaunay trian-
gulationas the straight-line dual of the Voronoi diagram.
Specifically, for every pair of Voronoi regionsVu andVv

that share an edge, we draw the line segment fromu to v.
By construction, every Voronoi vertex,x, hasj ≥ 3 clos-
est input points. Usually there are exactly three closest
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points,u, v, w, in which case the triangle they span be-
longs to the Delaunay triangulation. Note thatx is equally
far from u, v, andw and further from all other points in
S. This implies theempty circle propertyof Delaunay tri-
angles: all points ofS − {u, v, w} lie outside the circum-
scribed circle ofuvw. Similarly, for each Delaunay edge
uv, there is a circle that passes throughu andv such that
all points ofS − {u, v} lie outside the circle. For exam-
ple, the circle centered at the midpoint of the Voronoi edge
shared byVu andVv is empty in this sense. This property
can be used to prove that the edge skeleton of the Delau-
nay triangulation is a straight-line embedding of a planar
graph.

Figure 100: A Voronoi vertex of degree 5 and the corresponding
pentagon in the Delaunay triangulation. The dotted edges com-
plete the triangulation by decomposing the pentagon into three
triangles.

Now suppose there is a vertex with degreej > 3. It cor-
responds to a polygon withj > 3 edges in the Delaunay
triangulation, as illustrated in Figure 100. Strictly speak-
ing, the Delaunay triangulation is no longer a triangulation
but we can complete it to a triangulation by decompos-
ing eachj-gon intoj − 2 triangles. This corresponds to
perturbing the data points every so slightly such that the
degree-j Voronoi vertices are resolved into trees in which
j − 2 degree-3 vertices are connected byj − 3 tiny edges.

Local Delaunayhood. Given a triangulation of a finite
point setS, we can test whether or not it is the Delaunay
triangulation by testing each edge against the two trian-
gles that share the edge. Suppose the edgeuv in the tri-
angulationT is shared by the trianglesuvp anduvq. We
call uv locally Delaunay, or lD for short, if q lies on or
outside the circle that passes throughu, v, p. The condi-
tion is symmetric inp andq because the circle that passes
throughu, v, p intersects the first circle in pointsu andv.
It follows thatp lies on or outside the circle ofu, v, q iff q

lies on or outside the circle ofu, v, p. We also calluv lo-

cally Delaunay if it bounds the convex hull ofS and thus
belongs to only one triangle. The local condition on the
edges implies a global property.

DELAUNAY LEMMA . If every edge in a triangulationK
of S is locally Delaunay thenK is the Delaunay tri-
angulation ofS.

Although every edge of the Delaunay triangulation is lo-
cally Delaunay, the Delaunay Lemma is not trivial. In-
deed,K may contain edges that are locally Delaunay but
do not belong to the Delaunay triangulation, as shown in
Figure 101. We omit the proof of the lemma.

u v

Figure 101: The edgeuv is locally Delaunay but does not belong
to the Delaunay triangulation.

Edge-flipping. The Delaunay Lemma suggests we con-
struct the Delaunay triangulation by first constructing an
arbitrary triangulation of the point setS and then modify-
ing it locally to make all edges lD. The idea is to look for
non-lD edges and to flip them, as illustrated in Figure 102.
Indeed, ifuv is a non-lD edge shared by trianglesuvp and

v

p

u

q

Figure 102: The edgeuv is non-lD and can be flipped to the edge
pq, which is lD.

uvq thenupvq is a convex quadrilateral andflipping uv

means substituting one diagonal for the other, namelypq
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for uv. Note that ifuv is non-lD thenpq is lD. It is im-
portant that the algorithm finds non-lD edges quickly. For
this purpose, we use a stack of edges. Initially, we push
all edges on the stack and mark them.

while stack is non-emptydo
pop edgeuv from stack and unmark it;
if uv is non-lDthen

substitutepq for uv;
for ab ∈ {up, pv, vq, qu} do
if ab is unmarkedthen

pushab on the stack and mark it
endif

endfor
endif

endwhile.

The marks avoid multiple copies of the same edge on the
stack. This implies that at any one moment the size of the
stack is less than3n. Note also that initially the stack con-
tains all non-lD edges and that this property is maintained
as an invariant of the algorithm. The Delaunay Lemma
implies that when the algorithm halts, which is when the
stack is empty, then the triangulation is the Delaunay tri-
angulation. However, it is not yet clear that the algorithm
terminates. Indeed, the stack can grow and shrink dur-
ing the course of the algorithm, which makes it difficult to
prove that it ever runs empty.

In-circle test. Before studying the termination of the al-
gorithm, we look into the question of distinguishing lD
from non-lD edges. As before we assume that the edgeuv

is shared by the trianglesuvp anduvq in the current trian-
gulation. Recall thatuv is lD iff q lies outside the circle
that passes throughu, v, p. Let f : R

2 → R be defined by
f(x) = x2

1 + x2
2. As illustrated in Figure 103, the graph

of this function is a paraboloid in three-dimensional space
and we writex+ = (x1, x2, f(x)) for the vertical projec-
tion of the pointx onto the paraboloid. Assuming the three
pointsu, v, p do not lie on a common line then the points
u+, v+, p+ lie on a non-vertical plane that is the graph of
a functionh(x) = αx1 + βx2 + γ. The projection of the
intersection of the paraboloid and the plane back intoR

2

is given by

0 = f(x) − h(x)

= x2
1 + x2

2 − αx1 − βx2 − γ,

which is the equation of a circle. This circle passes
throughu, v, p so it is the circle we have to compareq

u p

v

q

Figure 103: The plane passing throughu
+

, v
+

, p
+ intersects the

paraboloid in an ellipse whose projection intoR
2 passes through

the pointsu, v, p. The pointq+ lies below the plane iffq lies
inside the circle.

against. We note thatq lies inside the circle iffq+ lies be-
low the plane. The latter test can be based on the sign of
the determinant of the 4-by-4 matrix

∆ =









1 u1 u2 u2
1 + u2

2

1 v1 v2 v2
1 + v2

2

1 p1 p2 p2
1 + p2

2

1 q1 q2 q2
1 + q2

2









.

Exchanging two rows in the matrix changes the sign.
While the in-circle test should be insensitive to the order
of the first three points, the sign of the determinant is not.
We correct the change using the sign of the determinant of
the 3-by-3 matrix that keeps track of the ordering ofu, v, p

along the circle,

Γ =





1 u1 u2

1 v1 v2

1 p1 p2



 .

Now we claim thats is inside the circle ofu, v, p iff the
two determinants have opposite signs:

boolean INCIRCLE(Points u, v, p, q)
return det Γ · det ∆ < 0.

We first show that the boolean function is correct foru =
(0, 0), v = (1, 0), p = (0, 1), andq = (0, 0.5). The sign
of the product of determinants remains unchanged if we
continuously move the points and avoid the configurations
that make either determinant zero, which are whenu, v, p

are collinear and whenu, v, p, q are cocircular. We can
change any configuration whereq is inside the circle of
u, v, p continuously into the special configuration without
going through zero, which implies the correctness of the
function for general input points.
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Termination and running time. To prove the edge-flip
algorithm terminates, we imagine the triangulation lifted
to R

3. We do this by projecting the vertices vertically
onto the paraboloid, as before, and connecting them with
straight edges and triangles in space. Letuv be an edge
shared by trianglesuvp anduvq that is flipped topq by
the algorithm. It follows the line segmentsuv andpq cross
and their endpoints form a convex quadrilateral, as shown
in Figure 104. After lifting the two line segments, we get

q

v

u
p

Figure 104: A flip in the plane lifts to a tetrahedron in space in
which the lD edge passes below the non-lD edge.

u+v+ passing abovep+q+. We may thus think of the flip
as gluing the tetrahedronu+v+p+q+ underneath the sur-
face obtained by lifting the triangulation. The surface is
pushed down by each flip and never pushed back up. The
removed edge is now above the new surface and can there-
fore not be reintroduced by a later flip. It follows that the
algorithm performs at most

(

n
2

)

flips and thus takes at most
time O(n2) to construct the Delaunay triangulation ofS.
There are faster algorithms that work in time O(n logn)
but we prefer the suboptimal method because it is simpler
and it reveals more about Delaunay triangulations than the
other algorithms.

The lifting of the input points toR3 leads to an interest-
ing interpretation of the edge-flip algorithm. Starting with
a monotone triangulated surface passing through the lifted
points, we glue tetrahedra below the surface until we reach
the unique convex surface that passes through the points.
The projection of this convex surface is the Delaunay tri-
angulation of the points in the plane. This also gives a
reinterpretation of the Delaunay Lemma in terms of con-
vex and concave edges of the surface.

80


