
22 Alpha Shapes

Many practical applications of geometry have to do with
the intuitive but vague concept of the shape of a finite point
set. To make this idea concrete, we use the distances be-
tween the points to identify subcomplexes of the Delaunay
triangulation that represent that shape at different levels of
resolution.

Union of disks. Let S be a set ofn points inR
2. For

eachr ≥ 0, we writeBu(r) = {x ∈ R
2 | ‖x− u‖ ≤

r} for the closed disk with centeru and radiusr. Let
U(r) =

⋃
u∈S Bu(r) be the union of then disks. We de-

compose this union into convex sets of the formRu(r) =
Bu(r) ∩ Vu. Then

(i) Ru(r) is closed and convex for every pointu ∈ S

and every radiusr ≥ 0;

(ii) Ru(r) andRv(r) have disjoint interiors whenever the
two points,u andv, are different;

(iii) U(r) =
⋃

u∈S Ru(r).

We illustrate this decomposition in Figure 105. Each re-
gionRu(r) is the intersection ofn− 1 closed half-planes
and a closed disk. All these sets are closed and convex,
which implies (i). The Voronoi regions have disjoint inte-
riors, which implies (ii). Finally, take a pointx ∈ U(r)
and letu be a point inS with x ∈ Vu. Thenx ∈ Bu(r)
and thereforex ∈ Ru(x). This implies (iii).

Figure 105: The Voronoi decomposition of a union of eight disks
in the plane and superimposed dual alpha complex.

Nerve. Similar to defining the Delaunay triangulation as
the dual of the Voronoi diagram, we define the alpha com-

plex as the dual of the Voronoi decomposition of the union
of disks. This time around, we do this more formally. Let-
ting C be a finite collection of sets, thenerveof C is the
system of subcollections that have a non-empty common
intersection,

NrvC = {X ⊆ C |
⋂
X 6= ∅}.

This is an abstract simplicial complex since
⋂
X 6= ∅ and

Y ⊆ X implies
⋂
Y 6= ∅. For example, ifC is the collec-

tion of Voronoi regions thenNrvC is an abstract version
of the Delaunay triangulation. More specifically, this is
true provide the points are in general position and in par-
ticular no four points lie on a common circle. We will as-
sume this for the remainder of this section. We say the De-
launay triangulation is ageometric realizationof NrvC,
namely the one obtained by mapping each Voronoi region
(a vertex in the abstract simplicial complex) to the gener-
ating point. All edges and triangles are just convex hulls
of their incident vertices. To go from the Delaunay trian-
gulation to the alpha complex, we substitute the regions
Ru(r) for theVu. Specifically,

Alpha(r) = Nrv {Ru(r) | u ∈ S}.

Clearly, this is isomorphic to a subcomplex of the nerve
of Voronoi regions. We can therefore drawAlpha(r) as
a subcomplex of the Delaunay triangulation; see Figure
105. We call this geometric realization ofAlpha(r) the
alpha complexfor radiusr, denoted asA(r). Thealpha
shapefor the same radius is the underlying space of the
alpha complex,|A(r)|.

The nerve preserves the way the union is connected.
In particular, their Betti numbers are the same, that is,
βp(U(r)) = βp(A(r)) for all dimensionsp and all radii
r. This implies that the union and the alpha shape have
the same number of components and the same number of
holes. For example, in Figure 105 both have one compo-
nent and two holes. We omit the proof of this property.

Filtration. We are interested in the sequence of alpha
shapes as the radius grows from zero to infinity. Since
growing r grows the regionsRu(r), the nerve can only
get bigger. In other words,A(r) ⊆ A(s) wheneverr ≤ s.
There are only finitely many subcomplexes of the Delau-
nay triangulation. Hence, we get a finite sequence of alpha
complexes. WritingAi for thei-th alpha complex, we get
the following nested sequence,

S = A1 ⊂ A2 ⊂ . . . ⊂ Ak = D,
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whereD denotes the Delaunay triangulation ofS. We
call such a sequence of complexes afiltration. We illus-
trate this construction in Figure 106. The sequence of al-
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Figure 106: A finite sequence of unions of disks, all decomposed
by the same Voronoi diagram.

pha complexes begins with a set ofn isolated vertices, the
points inS. To go from one complex to the next, we either
add an edge, we add a triangle, or we add a pair consisting
of a triangle with one of its edges. In Figure 106, we be-
gin with eight vertices and get the following sequence of
alpha complexes.

A1 = {a, b, c, d, e, f, g, h};

A2 = A1 ∪ {ah};

A3 = A2 ∪ {bc};

A4 = A3 ∪ {ab, ef };

A5 = A4 ∪ {de};

A6 = A5 ∪ {gh};

A7 = A6 ∪ {cd};

A8 = A7 ∪ {fg};

A9 = A8 ∪ {cg}.

Going fromA7 to A8, we get for the first time a1-cycle,
which bounds a hole in the embedding. InA9, this hole is
cut into two. This is the alpha complex depicted in Figure
105. We continue.

A10 = A9 ∪ {cf };

A11 = A10 ∪ {abh, bh};

A12 = A11 ∪ {cde, ce};

A13 = A12 ∪ {cfg};

A14 = A13 ∪ {cef };

A15 = A14 ∪ {bch, ch};

A16 = A15 ∪ {cgh}.

At this moment, we have a triangulated disk but not yet the
entire Delaunay triangulation since the trianglebcd and the
edgebd are still missing. Each step is generic except when
we add two equally long edges toA3.

Compatible ordering of simplices. We can represent
the entire filtration of alpha complexes compactly by sort-
ing the simplices in the order they join the growing com-
plex. An orderingσ1, σ2, . . . , σm of the Delaunay sim-
plices iscompatiblewith the filtration if

1. the simplices inAi precede the ones not inAi for
eachi;

2. the faces of a simplex precede the simplex.

For example, the sequence

a, b, c, d, e, f, g, h; ah; bc; ab, ef ;

de; gh; cd; fg; cg; cf ; bh, abh; ce,

cde; cfg ; cef ; ch, bch; cgh; bd; bcd

is compatible with the filtration in Figure 106. Every alpha
complex is a prefix of the compatible sequence but not
necessarily the other way round. Condition 2 guarantees
that every prefix is a complex, whether an alpha complex
or not. We thus get a finer filtration of complexes

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = D,

whereKi is the set of simplices fromσ1 to σi. To con-
struct the compatible ordering, we just need to compute
for each Delaunay simplex the radiusri = r(σi) such that
σi ∈ A(r) iff r ≥ ri. For a vertex, this radius is zero.
For a triangle, this is the radius of the circumcircle. For

ϕ ψ ϕ
ψ

Figure 107: Left: the middle edge belongs to two acute triangles.
Right: it belongs to an obtuse and an acute triangle.

an edge, we have two cases. Letϕ andψ be the angles
opposite the edgeσi inside the two incident triangles. We
haveϕ+ ψ > 180◦ because of the empty circle property.

CASE 1. ϕ < 90◦ andψ < 90◦. Thenri = r(σi) is half
the length of the edge.
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CASE 2. ϕ ≥ 90◦. Thenri = rj , whereσj is the incident
triangle with angleϕ.

Both cases are illustrated in Figure 107. In Case 2, the
edgeσi enters the growing alpha complex together with
the triangleσj . The total number of simplices in the De-
launay triangulation ism < 6n. The threshold radii can
be computed in time O(n). Sorting the simplices into
the compatible ordering can therefore be done in time
O(n logn).

Betti numbers. In two dimensions, Betti numbers can
be computed directly, without resorting to boundary matri-
ces. The only two possibly non-zero Betti numbers areβ0,
the number of components, andβ1, the number of holes.
We compute the Betti numbers ofKj by adding the sim-
plices in order.

β0 = β1 = 0;
for i = 1 to j do
switch dim σi:
case 0: β0 = β0 + 1;
case 1: let u, v be the endpoints ofσi;
if FIND(u) = FIND(v) then β1 = β1 + 1

else β0 = β0 − 1;
UNION(u, v)

endif
case 2: β1 = β1 − 1

endswitch
endfor.

All we need is tell apart the two cases whenσi is an edge.
This is done using a union-find data structure maintaining
the components of the alpha complex in amortized time
α(n) per simplex. The total running time of the algorithm
for computing Betti numbers is therefore O(nα(n)).
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