
24 NP-Complete Problems

In this section, we discuss a number ofNP-complete prob-
lems, with the goal to develop a feeling for what hard
problems look like. Recognizing hard problems is an im-
portant aspect of a reliable judgement for the difficulty of
a problem and the most promising approach to a solution.
Of course, forNP-complete problems, it seems futile to
work toward polynomial-time algorithms and instead we
would focus on finding approximations or circumventing
the problems altogether. We begin with a result on differ-
ent ways to write boolean formulas.

Reduction to 3-satisfiability. We call a boolean vari-
able or its negation aliteral. The conjunctive normal
form is a sequence of clauses connected by∧s, and each
clause is a sequence of literals connected by∨s. A for-
mula is in3-CNF if it is in conjunctive normal form and
each clause consists of three literals. It turns out that de-
ciding the satisfiability of a boolean formula in 3-CNF
is no easier than for a general boolean formula. Define
3-SAT = {ϕ ∈ SAT | ϕ is in 3-CNF}. We prove the
above claim by reducing SAT to 3-SAT.

SATISFIABILITY LEMMA . SAT ≤P 3-SAT.

PROOF. We take a boolean formulaϕ and transform it into
3-CNF in three steps.

Step 1. Think of ϕ as an expression and represent it as
a binary tree. Each node is an operation that gets the
input from its two children and forwards the output
to its parent. Introduce a new variable for the output
and define a new formulaϕ′ for each node, relating
the two input edges with the one output edge. Figure
110 shows the tree representation of the formulaϕ =
(x1 =⇒ x2) ⇐⇒ (x2 ∨ ¬x1). The new formula is

x2x21 1x

y1

2y 3

x

y

Figure 110: The tree representation of the formulaϕ. Inciden-
tally, ϕ is a tautology, which means it is satisfied by every truth
assignment. Equivalently,¬ϕ is not satisfiable.

ϕ′ = (y2 ⇐⇒ (x1 =⇒ x2))

∧(y3 ⇐⇒ (x2 ∨ ¬x1))

∧(y1 ⇐⇒ (y2 ⇐⇒ y3)) ∧ y1.

It should be clear that there is a satisfying assignment
for ϕ iff there is one forϕ′.

Step 2. Convert each clause into disjunctive normal
form. The most mechanical way uses the truth table
for each clause, as illustrated in Table 6. Each clause

y2 x1 x2 y2 ⇔ (x1 ⇒ x2) prohibited
0 0 0 0 ¬y2 ∧ ¬x1 ∧ ¬x2

0 0 1 0 ¬y2 ∧ ¬x1 ∧ x2

0 1 0 1
0 1 1 0 ¬y2 ∧ x1 ∧ x2

1 0 0 1
1 0 1 1
1 1 0 0 y2 ∧ x1 ∧ ¬x2

1 1 1 1

Table 6: Conversion of a clause into a disjunction of conjunctions
of at most three literals each.

has at most three literals. For example, the negation
of y2 ⇐⇒ (x1 =⇒ x2) is equivalent to the disjunc-
tion of the conjunctions in the rightmost column. It
follows thaty2 ⇐⇒ (x1 =⇒ x2) is equivalent to the
negation of that disjunction, which by de Morgan’s
law is(y2∨x1 ∨x2)∧ (y2 ∨x1∨¬x2)∧ (y2 ∨¬x1 ∨
¬x2) ∧ (¬y2 ∨ ¬x1 ∨ x2).

Step 3. The clauses with fewer than three literals can
be expanded by adding new variables. For example
a ∨ b is expanded to(a ∨ b ∨ p) ∧ (a ∨ b ∨ ¬p) and
(a) is expanded to(a ∨ p ∨ q) ∧ (a ∨ p ∨ ¬q) ∧ (a ∨
¬p ∨ q) ∧ (a ∨ ¬p ∨ ¬q).

Each step takes only polynomial time. At the end, we get
an equivalent formula in 3-conjunctive normal form.

We note that clauses of length three are necessary to
make the satisfiability problem hard. Indeed, there is a
polynomial-time algorithm that decides the satisfiability
of a formula in 2-CNF.

NP-completeness proofs. Using polynomial-time re-
ductions, we can show fairly mechanically that problems
areNP-complete, if they are. A key property here is the
transitivity of ≤P , that is, if L′ ≤P L1 andL1 ≤P L2

then L′ ≤P L2, as can be seen by composing the two
polynomial-time computable functions to get a third one.

89

REDUCTION LEMMA . Let L1, L2 ⊆ {0, 1}∗ and assume
L1 ≤P L2. If L1 is NP-hard andL2 ∈ NP then
L2 ∈ NPC.

A genericNP-completeness proof thus follows the steps
outline below.

Step 1. Prove thatL2 ∈ NP.

Step 2. Select a knownNP-hard problem,L1, and find
a polynomial-time computable function,f , with x ∈
L1 iff f(x) ∈ L2.

This is what we did forL2 = 3-SAT andL1 = SAT.
Therefore 3-SAT∈ NPC. Currently, there are thousands
of problems known to beNP-complete. This is often con-

NPC

NP

P

Figure 111: Possible relation betweenP, NPC, andNP.

sidered evidence thatP 6= NP, which can be the case only
if P ∩ NPC = ∅, as drawn in Figure 111.

Cliques and independent sets. There are manyNP-
complete problems on graphs. A typical such problem
asks for the largest complete subgraph. Define aclique
in an undirected graphG = (V, E) as a subgraph(W, F)
with F =

(

W

2

)

. GivenG and an integerk, the CLIQUE

problem asks whether or not there is a clique ofk or more
vertices.

CLAIM . CLIQUE ∈ NPC.

PROOF. Given k vertices inG, we can verify in poly-
nomial time whether or not they form a complete graph.
Thus CLIQUE ∈ NP. To prove property (2), we show
that 3-SAT≤P CLIQUE. Let ϕ be a boolean formula in
3-CNF consisting ofk clauses. We construct a graph as
follows:

(i) each clause is replaced by three vertices;

(ii) two vertices are connected by an edge if they do not
belong to the same clause and they are not negations
of each other.

In a satisfying truth assignment, there is at least one true
literal in each clause. The true literals form a clique. Con-
versely, a clique ofk or more vertices covers all clauses
and thus implies a satisfying truth assignment.

It is easy to decide in timeO(k2nk+2) whether or not a
graph ofn vertices has a clique of sizek. If k is a constant,
the running time of this algorithm is polynomial inn. For
the CLIQUE problem to beNP-complete it is therefore es-
sential thatk be a variable that can be arbitrarily large.
We use theNP-completeness of finding large cliques to
prove theNP-completeness of large sets of pairwise non-
adjacent vertices. LetG = (V, E) be an undirected graph.
A subsetW ⊆ V is independent if none of the vertices in
W are adjacent or, equivalently, ifE ∩

(

W

2

)

= ∅. Given
G and an integerk, the INDEPENDENTSET problem asks
whether or not there is an independent set ofk or more
vertices.

CLAIM . INDEPENDENTSET ∈ NPC.

PROOF. It is easy to verify that there is an independent set
of sizek: just guess a subset ofk vertices and verify that
no two are adjacent.

Figure 112: The four shaded vertices form an independent setin
the graph on the left and a clique in the complement graph on the
right.

We complete the proof by reducing the CLIQUE to the
INDEPENDENTSET problem. As illustrated in Figure 112,
W ⊆ V is independent iffW defines a clique in the com-
plement graph,G = (V,

(

V

2

)

−E). To prove CLIQUE ≤P

INDEPENDENTSET, we transform an instanceH, k of the
CLIQUE problem to the instanceG = H, k of the INDE-
PENDENTSET problem.G has an independent set of size
k or larger iff H has a clique of sizek or larger.

Various NP-complete graph problems. We now de-
scribe a fewNP-complete problems for graphs without
proving that they are indeedNP-complete. LetG =
(V, E) be an undirected graph withn vertices andk a pos-
itive integer, as before. The following problems defined
for G andk areNP-complete.

90

An ℓ-coloring of G is a functionχ : V → [ℓ] with
χ(u) 6= χ(v) wheneveru andv are adjacent. The CHRO-
MATIC NUMBER problem asks whether or notG has anℓ-
coloring withℓ ≤ k. The problem remainsNP-complete
for fixed k ≥ 3. For k = 2, the CHROMATIC NUMBER

problem asks whether or notG is bipartite, for which there
is a polynomial-time algorithm.

The bandwidth of G is the minimumℓ such that there
is a bijectionβ : V → [n] with |β(u) − β(v)| ≤ ℓ for
all adjacent verticesu andv. The BANDWIDTH problem
asks whether or not the bandwidth ofG is k or less. The
problem arises in linear algebra, where we permute rows
and columns of a matrix to move all non-zero elements of
a square matrix as close to the diagonal as possible. For
example, if the graph is a simple path then the bandwidth
is 1, as can be seen in Figure 113. We can transform the

01

1

1

0

1

10

1

0

0
0

0

0 1

1

1

1

7

6

5

4

3

2

1

8

1

101

1

0

Figure 113: Simple path and adjacency matrix with rows and
columns ordered along the path.

adjacency matrix ofG such that all non-zero diagonals are
at most the bandwidth ofG away from the main diagonal.

Assume now that the graphG is complete,E =
(

V

2

)

, and that each edge,uv, has a positive integer
weight, w(uv). The TRAVELING SALESMAN problem
asks whether there is a permutationu0, u1, . . . , un−1 of
the vertices such that the sum of edges connecting con-
tiguous vertices (and the last vertex to the first) isk or
less,

n−1
∑

i=0

w(uiui+1) ≤ k,

where indices are taken modulon. The problem remains
NP-complete ifw : E → {1, 2} (reduction to HAMILTO -
NIAN CYCLE problem), and also if the vertices are points
in the plane and the weight of an edge is the Euclidean
distance between the two endpoints.

Set systems. Simple graphs are set systems in which the
sets contain only two elements. We now list a fewNP-
complete problems for more general set systems. Letting

V be a finite set,C ⊆ 2V a set system, andk a positive
integer, the following problems areNP-complete.

The PACKING problem asks whether or notC hask or
more mutually disjoint sets. The problem remainsNP-
complete if no set inC contains more than three elements,
and there is a polynomial-time algorithm if every set con-
tains two elements. In the latter case, the set system is a
graph and a maximum packing is a maximum matching.

The COVERING problem asks whether or notC hask

or fewer subsets whose union isV . The problem remains
NP-complete if no set inC contains more than three ele-
ments, and there is a polynomial-time algorithm if every
sets contains two elements. In the latter case, the set sys-
tem is a graph and the minimum cover can be constructed
in polynomial time from a maximum matching.

Suppose every elementv ∈ V has a positive integer
weight, w(v). The PARTITION problem asks whether
there is a subsetU ⊆ V with

∑

u∈U

w(u) =
∑

v∈V −U

w(v).

The problem remainsNP-complete if we require thatU
andV − U have the same number of elements.

91

