
25 Approximation Algorithms

Many important problems areNP-hard and just ignoring
them is not an option. There are indeed many things one
can do. For problems of small size, even exponential-
time algorithms can be effective and special subclasses
of hard problems sometimes have polynomial-time algo-
rithms. We consider a third coping strategy appropriate
for optimization problems, which is computing almost op-
timal solutions in polynomial time. In case the aim is
to maximize a positive cost, a̺(n)-approximation algo-
rithm is one that guarantees to find a solution with cost
C ≥ C∗/̺(n), whereC∗ is the maximum cost. For mini-
mization problems, we would requireC ≤ C∗̺(n). Note
that̺(n) ≥ 1 and if̺(n) = 1 then the algorithm produces
optimal solutions. Ideally,̺ is a constant but sometime
even this is not achievable in polynomial time.

Vertex cover. The first problem we consider is finding
the minimum set of vertices in a graphG = (V, E) that
covers all edges. Formally, a subsetV ′ ⊆ V is a ver-
tex cover if every edge has at least one endpoint inV ′.
Observe thatV ′ is a vertex cover iffV − V ′ is an inde-
pendent set. Finding a minimum vertex cover is therefore
equivalent to finding a maximum independent set. Since
the latter problem isNP-complete, we conclude that find-
ing a minimum vertex cover is alsoNP-complete. Here is
a straightforward algorithm that achieves approximation
ratio̺(n) = 2, for all n = cardV .

V ′ = ∅; E′ = E;
while E′ 6= ∅ do

select an arbitrary edgeuv in E′;
addu andv to V ′;
remove all edges incident tou or v from E′

endwhile.

Clearly, V ′ is a vertex cover. Using adjacency lists with
links between the two copies of an edge, the running time
is O(n + m), wherem is the number of edges. Further-
more, we have̺ = 2 because every cover must pick at
least one vertex of each edgeuv selected by the algorithm,
henceC ≤ 2C∗. Observe that this result does not imply
a constant approximation ratio for the maximum indepen-
dent set problem. We havecard (V − V ′) = n − C ≥
n − 2C∗, which we have to compare withn − C∗, the
size of the maximum independent set. ForC∗ = n

2
, the

approximation ratio is unbounded.

Let us contemplate the argument we used to relateC
andC∗. The set of edgesuv selected by the algorithm is

a matching, that is, a subset of the edges so that no two
share a vertex. The size of the minimum vertex cover is
at least the size of the largest possible matching. The al-
gorithm finds a matching and since it picks two vertices
per edge, we are guaranteed at most twice as many ver-
tices as needed. This pattern of boundingC∗ by the size
of another quantity (in this case the size of the largest
matching) is common in the analysis of approximation al-
gorithms. Incidentally, for bipartite graphs, the size of the
largest matching is equal to the size of the smallest vertex
cover. Furthermore, there is a polynomial-time algorithm
for computing them.

Traveling salesman. Second, we consider the traveling
salesman problem, which is formulated for a complete
graphG = (V, E) with a positive integer cost function
c : E → Z+. A tour in this graph is a Hamiltonian
cycle and the problem is finding the tour,A, with mini-
mum total cost,c(A) =

∑

uv∈A c(uv). Let us first as-
sume that the cost function satisfies the triangle inequal-
ity, c(uw) ≤ c(uv) + c(vw) for all u, v, w ∈ V . It can
be shown that the problem of finding the shortest tour
remainsNP-complete even if we restrict it to weighted
graphs that satisfy this inequality. We formulate an al-
gorithm based on the observation that the cost of every
tour is at least the cost of the minimum spanning tree,
C∗ ≥ c(T).

1 Construct the minimum spanning treeT of G.

2 Return the preorder sequence of vertices inT .

Using Prim’s algorithm for the minimum spanning tree,
the running time is O(n2). Figure 114 illustrates the algo-
rithm. The preorder sequence is only defined if we have

Figure 114: The solid minimum spanning tree, the dotted traver-
sal using each edge of the tree twice, and the solid tour obtained
by taking short-cuts.

a root and the neighbors of each vertex are ordered, but

92

we may choose both arbitrarily. The cost of the returned
tour is at most twice the cost of the minimum spanning
tree. To see this, consider traversing each edge of the min-
imum spanning tree twice, once in each direction. When-
ever a vertex is visited more than once, we take the direct
edge connecting the two neighbors of the second copy as a
short-cut. By the triangle inequality, this substitution can
only decrease the overall cost of the traversal. It follows
thatC ≤ 2c(T) ≤ 2C∗.

The triangle inequality is essential in finding a constant
approximation. Indeed, without it we can construct in-
stances of the problem for which finding a constant ap-
proximation isNP-hard. To see this, transform an un-
weighted graphG′ = (V ′, E′) to the complete weighted
graphG = (V, E) with

c(uv) =

{

1 if uv ∈ E′,
̺n + 1 otherwise.

Any ̺-approximation algorithm must return the Hamilto-
nian cycle ofG′, if there is one.

Set cover. Third, we consider the problem of covering a
setX with sets chosen from a set systemF . We assume
the set is the union of sets in the system,X =

⋃

F . More
precisely, we are looking for a smallest subsystemF ′ ⊆ F
with X =

⋃

F ′. Thecost of this subsystem is the number
of sets it contains,cardF ′. See Figure 115 for an illustra-
tion of the problem. The vertex cover problem is a special

Figure 115: The setX of twelve dots can be covered with four
of the five sets in the system.

case:X = E andF contains all subsets of edges incident
to a common vertex. It is special because each element
(edge) belongs to exactly two sets. Since we no longer
have a bound on the number of sets containing a single
element, it is not surprising that the algorithm for vertex
covers does not extend to a constant-approximation algo-
rithm for set covers. Instead, we consider the following

greedy approach that selects, at each step, the set contain-
ing the maximum number of yet uncovered elements.

F ′ = ∅; X ′ = X ;
while X ′ 6= ∅ do

selectS ∈ F maximizingcard (S ∩ X ′);
F ′ = F ′ ∪ {S}; X ′ = X ′ − S

endwhile.

Using a sparse matrix representation of the set system
(similar to an adjacency list representation of a graph), we
can run the algorithm in time proportional to the total size
of the sets in the system,n =

∑

S∈F
cardS. We omit the

details.

Analysis. More interesting than the running time is the
analysis of the approximation ratio the greedy algorithm
achieves. It is convenient to have short notation for thed-
th harmonic number,Hd =

∑d

i=1
1

i
for d ≥ 0. Recall that

Hd ≤ 1 + ln d for d ≥ 1. Let the size of the largest set in
the system bem = max{cardS | S ∈ F}.

CLAIM . The greedy method is anHm-approximation al-
gorithm for the set cover problem.

PROOF. For each setS selected by the algorithm, we dis-
tribute $1 over thecard (S ∩ X ′) elements covered for the
first time. Letcx be the cost allocated this way tox ∈ X .
We havecardF ′ =

∑

x∈X cx. If x is covered the first
time by thei-th selected set,Si, then

cx =
1

card (Si − (S1 ∪ . . . ∪ Si−1))
.

We havecardF ′ ≤
∑

S∈F∗

∑

x∈S cx because the opti-
mal cover,F∗, contains each elementx at least once. We
will prove shortly that

∑

x∈S cx ≤ HcardS for every set
S ∈ F . It follows that

cardF ′ ≤
∑

S∈F∗

Hcard S ≤ HmcardF∗,

as claimed.

For m = 3 we get̺ = H3 = 11

6
. This implies that

for graphs with vertex-degrees at most 3, the greedy algo-
rithm guarantees a vertex cover of size at most11

6
times

the optimum, which is better than the ratio 2 guaranteed
by our first algorithm.

We still need to prove that the sum of costscx over
the elements of a setS in the system is bounded from
above byHcardS . Let ui be the number of elements in

93

S that are not covered by the firsti selected sets,ui =
card (S − (S1 ∪ . . . ∪ Si)), and observe that the numbers
do not increase. Letuk−1 be the last non-zero number in
the sequence, socardS = u0 ≥ . . . ≥ uk−1 > uk = 0.
Sinceui−1 − ui is the number of elements inS covered
the first time bySi, we have

∑

x∈S

cx =
k

∑

i=1

ui−1 − ui

card (Si − (S1 ∪ . . . ∪ Si−1))
.

We also haveui−1 ≤ card (Si − (S1 ∪ . . . ∪ Si−1)), for
all i ≤ k because of the greedy choice ofSi. The problem
thus reduces to bounding the sum of ratiosui−1−ui

ui−1

. It is
not difficult to see that this sum can be at least logarithmic
in the size ofS. Indeed, if we chooseui about half the
size ofui−1, for all i ≥ 1, then we have logarithmically
many terms, each roughly1

2
. We use a sequence of simple

arithmetic manipulations to prove that this lower bound is
asymptotically tight:

∑

x∈S

cx ≤
k

∑

i=1

ui−1 − ui

ui−1

=
k

∑

i=1

ui−1
∑

j=ui+1

1

ui−1

.

We now replace the denominator byj ≤ ui−1 to form a
telescoping series of harmonic numbers and get

∑

x∈S

cx ≤
k

∑

i=1

ui−1
∑

j=ui+1

1

j

=

k
∑

i=1





ui−1
∑

j=1

1

j
−

ui
∑

j=1

1

j





=

k
∑

i=1

(Hui−1
− Hui

),

which is equal toHu0
−Huk

= Hcard S . This fills the gap
left in the analysis of the greedy algorithm.

94

