Back to linked lists

• Snarf the code to today’s recitation
• Look at the code
• What is similar between a Node in a LinkedList and a Node in a tree?
 (compare this code to Wednesday’s)

Announcements

• New assignment (on linked lists) after fall break
Today

- Revisit linked lists
- Code with linked lists
 - very helpful for the next assignment

```java
IntTreeNode root = null;

public class IntTreeNode {
    public int myValue;
    public IntTreeNode myLeft; // holds smaller tree nodes
    public IntTreeNode myRight; // holds larger tree nodes

    public IntTreeNode(int val) { value = val; }
}
```
private Node myHead;

private class Node {
 String myValue;
 Node myNext;

 Node(String value, Node next) {
 myValue = value;
 myNext = next;
 }
}

public void addAtBeginning(String valueToAdd) {
 myHead = new Node(valueToAdd, myHead);
}

StringLinkedList s = new StringLinkedList();
s.addAtBeginning("Hi");
public void addAtEnd(String valueToAdd)
{
 //some code goes here
}

s.addAtEnd("World");

public void removeLongestString()
{
 // your code goes here
 // when you implement this function, be sure to think about
 // a. what if the list is empty
 // b. what if the longest element is the first element
 // c. what if the list has only 1 element
}

• doubleList()
 • Takes a list and doubles each element \([a,b,c] \rightarrow [a,a,b,b,c,c]\)

• moveToEnd(int k)
 • move k elements to the end of the list
 • if \(k = 2\), \([a,b,c,d] \rightarrow [c,d,a,b]\)

• reverse()
 • \([a,b,c] \rightarrow [c,b,a]\)

• Make sure your code passes the unit tests!

• submit to recitation_6 folder