DeFiler FAQ

• Multiple writes to a dFile?
 • Only one writer at a time is allowed
 • Mutex()/ReaderWriterLock() at a dFile
• read()/write() always start at beginning of the dFile (no seeking).
• Size of a inode
 • Okay to assume fixed size but may not be a good idea to assume the size of a inode == block size
 • 256 bytes can hold 64 pointers => at least 50 blocks after metadata (satisfies the requirement)
 • Simple to implement as a linked list
 • Always the last pointer is reserved for indirect block pointer
DeFiler FAQ

• Valid status?

```c
ReadBlock() {

   getBlock(); // returns DBuffer for the block

    /* check the contents, the buffer may be associated with other block earlier and the contents are invalid */

    if (checkValid())

        return buffer;

    else startFetch();

    wait for ioComplete();

    return buffer;
}
```
DeFiler FAQ

• You may not use any memory space other than the DBufferCache
 • FreeMap + Inode region + Data blocks all should reside in DBufferCache space
 • You can keep the FreeMap + Inode region in memory all the time
 • Just have an additional variable called “isPinned” inside DBuffer.

• Synchronization: Mainly in DBufferCache, i.e., getBlock() and releaseBlock()
 • You need a CV or a semaphore to wakeup the waiters

• Only a mutex need at a DFS level

• No synchronization at the VirtualDisk level
 • A queue is enough to maintain the sequence of requests
A brief history of Google

BackRub:
1996
4 disk drives
24 GB total storage
A brief history of Google

Google:
1998
44 disk drives
366 GB total storage
A brief history of Google

Google:
2003
15,000 machines
? PB total storage
A brief history of Google

45 containers x 1000 servers x 36 sites
= ~ 1.6 million servers (lower bound)

Min 45 containers/data center
Google design principles

• **Workload: easy to parallelize**
 - Want to take advantage of many processors, disks

• **Why not buy a bunch of supercomputers?**
 - Leverage parallelism of lots of (slower) cheap machines
 - Supercomputer price/performance ratio is poor

• **What is the downside of cheap hardware?**
What happens on a query?

http://www.google.com/search?q=duke
http://64.233.179.104/search?q=duke
What happens on a query?

http://64.233.179.104/search?q=duke
Google hardware model

• Google machines are cheap and likely to fail

• What must they do to keep things up and running?
 • Store data in several places (replication)
 • When one machine fails, shift load onto ones still around

• Does replication get you anything else?
 • Enables more parallel reads
Fault tolerance and performance

• **Google machines are cheap and likely to fail**

• **Does it matter how fast an individual machine is?**
 • Somewhat, but not that much
 • Parallelism enabled by replication has a bigger impact

• **Any downside to having a ton of machines?**
 • Space
Fault tolerance and performance

• Google machines are cheap and likely to fail

• Any workloads where this wouldn’t work?
 • Lots of writes to the same data
 • Web examples? (web is mostly read)
Google power consumption

- A circa 2003 mid-range server
 - Draws 90 W of DC power under load
 - 55 W for two CPUs
 - 10 W for disk drive
 - 25 W for DRAM and motherboard
- Assume 75% efficient ATX power supply
 - 120 W of AC power per server
 - 10 kW per rack
Google power consumption

• A server rack fits comfortably in 25 ft²
 • Power density of 400 W/ ft²
 • Higher-end server density = 700 W/ ft²

• Typical data centers provide 70-150 W/ ft²
 • Google needs to bring down the power density
 • Requires extra cooling or space

• Lower power servers?
 • Slower, but must not harm performance
OS Complexity

• **Lines of code**
 - XP: 40 million
 - Linux 2.6: 6 million
 - (mostly driver code)

• **Sources of complexity**
 - Multiple instruction streams (processes)
 - Multiple interrupt sources (I/O, timers, faults)
Complexity in Google

- **Consider the Google hardware model**
 - Thousands of cheap, commodity machines

- **Why is this a hard programming environment?**
 - Speed through parallelism (concurrency)
 - Constant node failure (fault tolerance)
Complexity in Google

Google provides abstractions to make programming easier.
Abstractions in Google

• **Google File System**
 • Provides data-sharing and durability

• **Map-Reduce**
 • Makes parallel programming easier

• **BigTable**
 • Manages large relational data sets

• **Chubby**
 • Distributed locking service
Problem: lots of data

• Example:
 • 20+ billion web pages × 20KB = 400+ terabytes

• One computer can read 30-35 MB/sec from disk

• ~four months to read the web

• ~1,000 hard drives just to store the web

• Even more to do something with the data
Solution: spread the load

• **Good news**
 • Same problem with 1,000 machines, < 3 hours

• **Bad news: programming work**
 • Communication and coordination
 • Recovering from machine failures
 • Status reporting
 • Debugging and optimizing
 • Workload placement

• **Bad news II: repeat for every problem**
Machine hardware reality

• **Multiple cores**
• **2-6 locally-attached disks**
 • 2TB to ~12 TB of disk
• **Typical machine runs**
 • GFS chunkserver
 • Scheduler daemon for user tasks
 • One or many tasks
Machine hardware reality

- **Single-thread performance doesn’t matter**
 - Total throughput/$ more important than peak perf.

- **Stuff breaks**
 - One server may stay up for three years (1,000 days)
 - If you have 10,000 servers, expect to lose 10/day
 - If you have 1,000,000 servers, expect to lose 1,000/day

- “Ultra-reliable” hardware doesn’t really help

- Scale trumps minor individual improvements

- Still have to deal with fault-tolerance in software
Google hardware reality
Google storage

• “The Google File System”
 • Award paper at SOSP in 2003

• “Spanner: Google's Globally distributed datastore”
 • Award paper at OSDI in 2012

• If you enjoy reading the paper
 • Sign up for COMPSCI 510 (you’ll read lots of papers like it!)
Google design principles

- **Use lots of cheap, commodity hardware**
- **Provide reliability in software**
- **Scale ensures a constant stream of failures**
 - 2003: > 15,000 machines
 - 2007: > 1,000,000 machines
 - 2012: > 10,000,000?
- **GFS exemplifies how they manage failure**
Sources of failure

- **Software**
 - Application bugs, OS bugs
 - Human errors

- **Hardware**
 - Disks, memory
 - Connectors, networking
 - Power supplies
Design considerations

1. Component failures

2. Files are huge (multi-GB files)
 - Recall that PC files are mostly small
 - **How did this influence PC FS design?**
 - Relatively small block size (~KB)
Design considerations

1. Component failures

2. Files are huge (multi-GB files)

3. Most writes are large, sequential appends
 - Old data is rarely over-written
Design considerations

1. Component failures
2. Files are huge (multi-GB files)
3. Most writes are large, sequential appends
4. Reads are large and streamed or small and random
 • Once written, files are only read, often sequentially
 • Is this like or unlike PC file systems?
 • PC reads are mostly sequential reads of small files
 • How do sequential reads of large files affect client caching?
 • Caching is pretty much useless
1. Component failures
2. Files are huge (multi-GB files)
3. Most writes are large, sequential appends
4. Reads are large and streamed or small and random
5. Design file system for apps that use it
 - Files are often used as producer-consumer queues
 - 100s of producers trying to append concurrently
 - Want atomicity of append with minimal synchronization
 - Want support for atomic append
Design considerations

1. Component failures
2. Files are huge (multi-GB files)
3. Most writes are large, sequential appends
4. Reads are large and streamed or small and random
5. Design file system for apps that use it
6. High sustained bandwidth better than low latency
 • What is the difference between BW and latency?
 • Network as road (BW = # lanes, latency = speed limit)
Google File System (GFS)

- Similar API to POSIX
 - Create/delete, open/close, read/write

- GFS-specific calls
 - Snapshot (low-cost copy)
 - Record_append
 - (allows concurrent appends, ensures atomicity of each append)

- What does this description of record_append mean?
 - Individual appends may be interleaved arbitrarily
 - Each append’s data will not be interleaved with another’s
GFS architecture

• **Key features:**
 - Must ensure atomicity of appends
 - Must be fault tolerant
 - Must provide high throughput through parallelism
GFS architecture

• Cluster-based
 • Single logical **master**
 • Multiple **chunkservers**

• Clusters are accessed by multiple clients
 • Clients are commodity Linux machines
 • Machines can be both clients and servers
GFS architecture
File data storage

- Files are broken into fixed-size chunks
- Chunks are named by a globally unique ID
 - ID is chosen by the master
 - ID is called a chunk handle
- Servers store chunks as normal Linux files
- Servers accept reads/writes with handle + byte range
File data storage

• Chunks are replicated at 3 servers

• What are the advantages of replication?
 • Better availability (if one fails, two left)
 • Better read performance (parallel reads)
File data storage

- **Chunks are replicated at 3 servers**
 - Using more than three would waste resources

- **If 4 machines try to be replicas**
 - First 3 should be allowed, 4th should be denied

- **How does this look like a synchronization problem?**
 - Can think of “acting as a chunk’s replica” as critical section
 - Only want three servers in that critical section

- **How did we solve this kind of problem previously?**
 - Semaphores or locks/CVs
 - Ensure that max of 3 threads in critical section
Server () {

}
Lock l;
int num_replicas=0;

Server () {
 l.lock ();
 if (num_replicas < 3) {
 num_replicas++;
 l.unlock ();

 while (1) {
 // do server things
 }
 }else {
 l.lock ();
 num_replicas--;
 l.unlock ();
 }
 l.unlock ();
 // do something else
}
File data storage

• **Chunks are replicated at 3 servers**
 • Using more than three would waste resources

• **Why wouldn’t distributed locking be a good idea?**
 • Machines can fail holding a lock
 • Responsibility for chunk cannot be re-assigned
Lock l;
int num_replicas=0;

Server () {
 l.lock ();
 if (num_replicas < 3) {
 num_replicas++;
 l.unlock ();

 while (1) {
 // do server things
 }
 }
 l.lock ();
 num_replicas--;
}
l.unlock ();
// do something else
// do something else

What happens if a thread fails in here?
File data storage

- Chunks are replicated at 3 servers
- Instead: servers lease right to serve a chunk
 - Responsible for a chunk for a period of time
 - Must renew lease before it expires
- How does this make failure easier to handle?
 - If a node fails, its leases will expire
 - When it comes back up, just renew leases
- What has to be synchronized now between replicas/master?
 - Time: need to agree on when leases expire
- How do we ensure that time is synchronized between machines?
 - Only need a rough consensus (order of seconds)
 - Can use protocol like NTP
 - Spanner is clever: Uses GPS for atomic timestamps
File meta-data storage

• Master maintains all meta-data
 • Namespace info
 • Access control info
 • Mapping from files to chunks
 • Current chunk locations
Other master responsibilities

• Chunk lease management
• Garbage collection of orphaned chunks
 • How might a chunk become orphaned?
 • If a chunk is no longer in any file
• Chunk migration between servers
• HeartBeat messages to chunkservers
Client details

• **Client code is just a library**
 • Similar to File class in java

• **Caching**
 • No in-memory data caching at the client or servers
 • Clients still cache meta-data
Master design issues

• **Single (logical) master per cluster**
 - Master’s state is actually replicated elsewhere
 - Logically single because client speaks to one name

• **Where else have we seen this?**
 - Client communication with Google
 - Request sent to google.com
 - Use DNS tricks to direct request to nearby machine
Master design issues

• Single (logical) master per cluster
 • Master’s state is actually replicated elsewhere
 • Logically single because client speaks to one name
 • Use DNS tricks to locate/talk to a master

• Pros
 • Simplifies design
 • Master endowed with global knowledge
 • (makes good placement, replication decisions)
Master design issues

• Single (logical) master per cluster
 • Master’s state is actually replicated elsewhere
 • Logically single because client speak to one name

• Cons?
 • Could become a bottleneck
 • (recall how replication can improve performance)
 • **How to keep from becoming a bottleneck?**
 • Minimize its involvement in reads/writes
 • Clients talk to master very briefly
 • Most communication is with chunkservers
Client uses fixed size chunks to compute chunk index within a file
Example read

- Client asks master for the chunk handle at index i of the file
• Master replies with the chunk handle and list of replicas
Example read

- Client caches handle and replica list
- (maps filename + chunk index → chunk handle + replica list)
Example read

Client sends a request to the closest chunk server

Server returns data to client
Example read

- Can you think of any possible optimizations?
 - Could ask for multiple chunk handles at once (batching)
 - Server could return handles for subsequent indices (pre-fetching)
Chunk size

• Recall how we chose block/page size?

• What are the disadvantages of small/big chunks?
 • If too small, too much storage used for meta-data
 • If too large, too much internal fragmentation

• Impact of chunk size on client’s meat-data caching?
 • Data chunks are not cached (so no impact there)
 • Large chunks \rightarrow less meta-data/chunk
 • Clients can cache more meta-data at clients
 • Masters can fit all meta-data in memory
 • Much faster than retrieving from disk
Chunk size

Recall how we chose block/page sizes

What are the disadvantages of small/big chunks?

If too small, too much storage used for meta-data

If too large, too much internal fragmentation

What is a reasonable chunk size then?

Big?

They chose 64 MB

Reasonable when most files are many GB
Master’s state

1. File and chunk namespaces
2. Mapping from files to chunks
3. Chunk replica locations
4. All are kept in-memory
 • 1. and 2. are kept persistent
 • Use an operation log
Operation log

- **Historical record of all meta-data updates**
- **Only persistent record of meta-data updates**
- **Replicated at multiple machines**
 - Appending to log is transactional
 - Log records are synchronously flushed at all replicas
 - To recover, the master replays the operation log

What this means for master performance
- State updates will be slow (order of 10s of ms)

Why is this OK?
- Updates to namespaces and chunk mappings are relatively infrequent
- Log writes not in critical path of data updates
Atomic record_append

- How are concurrent file writes conventionally treated?
 - Concurrent writes to same file region are not serialized
 - Region can end up containing fragments from many clients

- Record_append
 - Client only specifies the data to append
 - GFS appends it to the file at least once atomically
 - GFS chooses the offset

- Why is this simpler than forcing clients to synchronize?
 - Clients would need a distributed locking scheme
 - GFS provides an abstraction, hides concurrency issues from clients

- Where else have we seen Google hide synchronization?
 - Map-Reduce programs
Mutation order

- Mutations are performed at each chunk’s replica
- Master chooses a primary for each chunk
 - Others are called secondary replicas
- Primary chooses an order for all mutations
 - Called “serializing”
- All replicas follow this “serial” order
Example mutation

- **Client asks master**
 - Primary replica
 - Secondary replicas
Example mutation

- **Master returns**
 - Primary replica
 - Secondary replicas
Example mutation

- **Client sends data**
 - To all replicas

- **Replicas**
 - Only buffer data
 - Do not apply
 - Ack client
Example mutation

- **Client tells primary**
 - Write request
 - Identifies sent data
- **Primary replica**
 - Assigns serial #s
 - Writes data locally
 - (in serial order)
Example mutation

- **Primary replica**
 - Forwards request
 - to secondaries

- **Secondary replicas**
 - Write data locally
 - (in serial order)
Example mutation

- **Secondary replicas**
 - Ack primary
 - Like “votes”
Example mutation

- **Primary replica**
 - Ack client
 - Like a commit
Example mutation

- Errors?
 - Require consensus
 - Just retry
Other approaches to storage

• **Distributed data structures**
 • Have seen some of this with the DNS tree
 • Will now look at hash tables (i.e., DHTs)

• **Distributed hash tables**
 • Provide the foundation for many key-value stores
 • Found in p2p systems, big cloud stores, etc.
Map-Reduce

• Widely applicable, simple way to program

• Hides lots of messy details
 • Automatic parallelization
 • Load balancing
 • Network/disk transfer optimization
 • Handling of machine failures
 • Robustness
Typical MapReduce problem

1. Read a lot of data (TBs)

2. Map
 - Extract something you care about from each record

1. Shuffle and sort Map output

2. Reduce
 - Aggregate, summarize, filter or transform sorted output

1. Write out the results

Outline remains the same, only change the map and reduce functions
More specifically

- **Programmer specifies two main methods**
 - Map \((k, v) \rightarrow <k', v'>\)*
 - Reduce \((k', <v'>*) \rightarrow <k', v'>\)*

- **All \(v'\) and \(k'\) are reduced together, in order**

- **Usually also specify**
 - **Partition**\((k', \text{total partitions}) \rightarrow \text{partition for } k'\)
 - Often a simple hash of the key
Example

• Word frequencies in web pages

• Input = files with one document/record

Key=doc.URL
Value=doc.content

Map

Key=word
Value=count

Key=word
Value=count

Key=word
Value=count

Map

Key="foo.com/file1"
Value="to be or not to be"

Key="to"
Value="1"

Key="be"
Value="1"

Key="not"
Value="1"

Key="to"
Value="1"

Key="be"
Value="1"

Key="or"
Value="1"
Example continued

- MapReduce lib gathers all pairs with same key
 - (shuffle and sort)

- Reduce combines values for a key

<table>
<thead>
<tr>
<th>Key'</th>
<th>Value'</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>or</td>
<td>1</td>
</tr>
<tr>
<td>not</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
</tbody>
</table>
Example pseudo-code

Map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
 // key: a word, same for input and output
 // intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));
Widely applicable at Google

- **Implemented as a C++ library**
 - Linked to user programs
 - Can read and write many data types

- **distributed grep**
- **distributed sort**
- **term-vector per host**
- **document clustering**
- **machine learning**

- **web access log stats**
- **web link-graph reversal**
- **inverted index construction**
- **statistical machine learning**
- **translation**
Example: query freq. over time

- Queries containing “eclipse”
- Queries containing “world series”
- Queries containing “full moon”
- Queries containing “summer olympics”
- Queries containing “watermelon”
- Queries containing “Opteron”
Example: language model stats

- Used in machine learning translation
 - Need to count # of times every 5-word sequence occurs
 - Keep all those where count ≥ 4

- Easy with MapReduce:
 - Map: extract 5-word sequences \rightarrow count from document
 - Reduce: combine counts, write out count if large enough
Example: joining with other data

- Generate per-doc summary
 - Include per-host info
 - E.g., # of pages on host, important terms on host
- **Easy with MapReduce:**
 - Map
 - Extract hostname from URL
 - Lookup per-host info
 - Combine with per-doc data and emit
 - Reduce
 - Identity function (just emit key/value directly)
MapReduce architecture

• How is this implemented?

• **One master, many workers**

 • Input data split into M map tasks (64MB each)

 • Reduce phase partitioned into R reduce tasks

 • Tasks are assigned to workers dynamically

 • Often: M=200,000; R=4,000; workers=2,000
MapReduce architecture

- **Why is a single coordinator (master) nice?**
 - Reduces complexity
 - Can monitor progress and status from one logical place

- **Why use multiple workers?**
 - Take advantage of parallelism

- **Useful approach**
 - Centralize coordination
 - De-centralize heavy lifting
MapReduce architecture

1. Master assigns each map to a free worker
 • Considers locality of data to worker
 • Worker reads task input (often from local disk)
 • Worker produces R local files with k/v pairs

1. Master assigns each reduce task to a free worker
 • Worker reads intermediate k/v pairs from map workers
 • Worker sorts & applies user’s Reduce op to get output
Parallel MapReduce

Input data

Master

Partitioned output
MapReduce fault tolerance

• **What is the downside of a centralized Master?**
 • Can become a single point of failure

• **Worry about it becoming a performance bottleneck?**
 • Not really
 • Master isn’t in the critical path for heavy lifting
 • Just there to make sure everything runs smoothly

• **How can we recover from a Master failure?**
 • Log state transformations to Google File System
 • New master uses log to recover and continue
 • Same idea as transactions covered in storage lectures
MapReduce fault tolerance

- **How likely is master to fail?**
 - Not likely
 - Individual machine can run for three years
 - \(P(\text{node failure})\)

- **How likely is it that at least one worker will fail?**
 - Very likely
 - For \(N\) workers
 - \(1 - P(\text{no nodes fail})\)
 - \(= 1 - (P(\text{worker1 doesn’t fail}) \times \ldots \times P(\text{workerN doesn’t fail}))\)
 - \(= 1 - ((1-P(\text{worker1 failure})) \times \ldots \times (1-P(\text{worker1 failure})))\)
 - \(= 1 - (1-P(\text{node failure}))^N\)

Failure exponentially more likely as \(N\) grows!!
MapReduce fault tolerance

• **Worker failures handled via re-execution**

• **On worker failure:**
 • Detect failure via periodic heartbeats
 • Re-execute completed and in-progress map tasks
 • Re-execute in-progress reduce tasks
 • Task completion committed through master
MapReduce performance

Sort 10^{10} 100-byte records (~1TB) in ~10.5 minutes. 50 lines of C++ code running on 1800 machines.