Relational Database Design Theory

CompSci 316
Introduction to Database Systems

Announcements (Tue. Sep. 11)

- Homework #1 due next Tuesday
  - Start now before it’s too late!
- If you haven’t been receiving email announcements, email me
- Project is now officially “assigned”
  - See “Assignments” on course website for handout
  - Let me know if there is anything I can do to help you form project ideas/groups
- Anonymous feedback is welcome
  - See course website for link

Motivation

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
  - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
    - Update, insertion, deletion anomalies
- How about a systematic approach to detecting and removing redundancy in designs?
  - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where $X$ and $Y$ are sets of attributes in a relation $R$
- $X \rightarrow Y$ means that whenever two tuples in $R$ agree on all the attributes in $X$, they must also agree on all attributes in $Y$

```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>
```

Must be $b$

Could be anything

FD examples

Address ($street\_address, city, state, zip$)

- Trivial FD: LHS $\supseteq$ RHS
- Completely non-trivial FD: LHS $\cap$ RHS $= \emptyset$

Keys redefined using FD’s

A set of attributes $K$ is a key for a relation $R$ if
- $K \rightarrow$ all (other) attributes of $R$
  - That is, $K$ is a “super key”
- No proper subset of $K$ satisfies the above condition
  - That is, $K$ is minimal
Reasoning with FD’s

Given a relation $R$ and a set of FD’s $\mathcal{F}$

- Does another FD follow from $\mathcal{F}$?
  - Are some of the FD’s in $\mathcal{F}$ redundant (i.e., they follow from the others)?
- Is $K$ a key of $R$?
  - What are all the keys of $R$?

Attribute closure

- Given $R$, a set of FD’s $\mathcal{F}$ that hold in $R$, and a set of attributes $Z$ in $R$:
  - The closure of $Z$ (denoted $Z^+$) with respect to $\mathcal{F}$ is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by $Z$ (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
  - Start with closure $\equiv Z$
  - If $X \rightarrow Y$ is in $\mathcal{F}$ and $X$ is already in the closure, then also add $Y$ to the closure
  - Repeat until no more attributes can be added

A more complex example

$StudentGrade (SID, name, email, CID, grade)$

(Not a good design, and we will see why later)
Example of computing closure

- $\mathcal{F}$ includes:
  - $SID \rightarrow \text{name, email}$
  - $email \rightarrow \text{SID}$
  - $SID, CID \rightarrow \text{grade}$
- $\{CID, email\}^+ = ?$
- $email \rightarrow \text{SID}$
  - Add $SID$; closure is now $\{CID, email, SID\}$
- $SID \rightarrow \text{name, email}$
  - Add $name, email$; closure is now $\{CID, email, SID, name\}$

Using attribute closure

Given a relation $R$ and set of FD's $\mathcal{F}$

- Does another FD $X \rightarrow Y$ follow from $\mathcal{F}$?
  - Compute $X^+$ with respect to $\mathcal{F}$
  - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from $\mathcal{F}$
- Is $K$ a key of $R$?
  - Compute $K^+$ with respect to $\mathcal{F}$
  - If $K^+$ contains all the attributes of $R$, $K$ is a super key
  - Still need to verify that $K$ is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
  - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
  - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any $Z$
  - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
  - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
  - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD's

* Consider a non-trivial FD $X \rightarrow Y$ where $X$ is not a super key
  - Since $X$ is not a super key, there are some attributes (say $Z$) that are not functionally determined by $X$

$$
\begin{array}{c|c|c}
X & Y & Z \\
\hline
\alpha & b & Z_1 \\
\alpha & B & Z_2 \\
\vdots & \vdots & \vdots \\
\end{array}
$$

That $b$ is always associated with $\alpha$ is recorded by multiple rows: redundancy, update/insertion/deletion anomaly

Example of redundancy

* $StudentGrade$ $(SID, name, email, CID, grade)$
* $SID \rightarrow$ name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS316</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS3210</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
<td>CPS316</td>
<td>B</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS316</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS3300</td>
<td>A+</td>
</tr>
<tr>
<td>558</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
<td>CPS310</td>
<td>C</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Decomposition

* Eliminates redundancy
* To get back to the original relation:
Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and SID is stored twice!)

Bad decomposition

Lossless join decomposition

- Decompose relation $R$ into relations $S$ and $T$
  - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
  - $S = \pi_{\text{attrs}(S)}(R)$
  - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \Join T$
  - Any decomposition gives $R \subseteq S \Join T$ (why?)
    - A lossy decomposition is one with $R \subset S \Join T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
  - Or, the ability to distinguish different original relations

Questions about decomposition

- When to decompose

- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation $R$ is in Boyce-Codd Normal Form if
  - For every non-trivial FD $X \rightarrow Y$ in $R$, $X$ is a super key
  - That is, all FDs follow from "key $\rightarrow$ other attributes"

- When to decompose
  - As long as some relation is not in BCNF

- How to come up with a correct decomposition
  - Always decompose on a BCNF violation (details next)
  - Then it is guaranteed to be a lossless join decomposition!
**BCNF decomposition algorithm**

- Find a BCNF violation
  - That is, a non-trivial FD $X \rightarrow Y$ in $R$ where $X$ is not a super key of $R$
- Decompose $R$ into $R_1$ and $R_2$, where
  - $R_1$ has attributes $X \cup Y$
  - $R_2$ has attributes $X \cup Z$, where $Z$ contains all attributes of $R$ that are in neither $X$ nor $Y$
- Repeat until all relations are in BCNF

---

**BCNF decomposition example**

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
  - BCNF violation: $\text{SID} \rightarrow \text{name}, \text{email}$

  - $\text{Student} (\text{SID}, \text{name}, \text{email})$
    - BCNF
  - $\text{Grade} (\text{SID}, \text{CID}, \text{grade})$
    - BCNF

---

**Another example**

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
  - BCNF violation: $\text{email} \rightarrow \text{SID}$

  - $\text{StudentID} (\text{email}, \text{SID})$
    - BCNF
  - $\text{StudentGrade'} (\text{email}, \text{name}, \text{CID}, \text{grade})$
Why is BCNF decomposition lossless

Given non-trivial \( X \rightarrow Y \) in \( R \) where \( X \) is not a super key of \( R \), need to prove:

- Anything we project always comes back in the join:
  \( R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \)
  - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
  \( R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \)
  - Proof will make use of the fact that \( X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
  - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- \textit{Student (SID, CID, club)}
  - Suppose your classes have nothing to do with the clubs you join
  - FD’s?
  - BCNF?
  - Redundancies?
Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where $X$ and $Y$ are sets of attributes in a relation $R$.
- $X \rightarrow Y$ means that whenever two rows in $R$ agree on all the attributes of $X$, then we can swap their $Y$ components and get two new rows that are also in $R$.

MVD examples

Student ($SID, CID, club$)
- $SID \rightarrow CID$
- $SID, CID \rightarrow club$
  - Trivial: LHS $\cup$ RHS = all attributes of $R$
  - Trivial: LHS $\supset$ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
  - If $X \rightarrow Y$, then $X \rightarrow \text{attr}(R) - X - Y$
- MVD augmentation:
  - If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity:
  - If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD):
  - Try proving things using these!
- Coalescence:
  - If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some $W$ disjoint from $Y$ such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

- Given a set of FD's and MVD's $\mathcal{D}$, does another dependency $d$ (FD or MVD) follow from $\mathcal{D}$?
- Procedure
  - Start with the hypothesis of $d$, and treat them as "seed" tuples in a relation
  - Apply the given dependencies in $\mathcal{D}$ repeatedly
    - If we apply an FD, we infer equality of two symbols
    - If we apply an MVD, we infer more tuples
  - If we infer the conclusion of $d$, we have a proof
  - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>$B$</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>$B$</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
</tr>
</tbody>
</table>

$A \rightarrow B$ $b1 = b2$
$B \rightarrow C$ $c1 = c2$

In general, both new tuples and new equalities may be generated.
Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>$b_1$</td>
</tr>
<tr>
<td>$B$</td>
<td>$b_2$</td>
</tr>
<tr>
<td>$C$</td>
<td>$c_1$</td>
</tr>
<tr>
<td>$D$</td>
<td>$d_1$</td>
</tr>
<tr>
<td>$A$</td>
<td>$b_2$</td>
</tr>
<tr>
<td>$B$</td>
<td>$c_2$</td>
</tr>
<tr>
<td>$C$</td>
<td>$d_1$</td>
</tr>
<tr>
<td>$A$</td>
<td>$b_1$</td>
</tr>
<tr>
<td>$B$</td>
<td>$c_1$</td>
</tr>
<tr>
<td>$C$</td>
<td>$d_2$</td>
</tr>
</tbody>
</table>

4NF

- A relation $R$ is in Fourth Normal Form (4NF) if
  - For every non-trivial MVD $X \rightarrow Y$ in $R$, $X$ is a superkey
  - That is, all FD’s and MVD’s follow from “key $\rightarrow$ other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
  - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
  - A non-trivial MVD $X \rightarrow Y$ in $R$ where $X$ is not a superkey
- Decompose $R$ into $R_1$ and $R_2$, where
  - $R_1$ has attributes $X \cup Y$
  - $R_2$ has attributes $X \cup Z$ (contains $R$ attributes not in $X$ or $Y$)
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

**Student (SID, CID, club)**

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS316</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
<td>sumo</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS316</td>
<td>ballet</td>
</tr>
<tr>
<td>123</td>
<td>CPS310</td>
<td>sumo</td>
</tr>
</tbody>
</table>

4NF violation: SID → CID

**Enroll (SID, CID)**

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS316</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
</tr>
<tr>
<td>123</td>
<td>CPS316</td>
</tr>
</tbody>
</table>

**Join (SID, club)**

<table>
<thead>
<tr>
<th>SID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>ballet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>golf</td>
</tr>
</tbody>
</table>

Summary

- Philosophy behind BCNF, 4NF:
  Data should depend on the key, the whole key, and nothing but the key!
- Other normal forms
  - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
  - 2NF: Slightly more relaxed than 3NF
  - 1NF: All column values must be atomic