Query Processing

CompSci 316
Introduction to Database Systems

Announcements (Thu. Nov. 14)

- Project Milestone #2 due today
- Homework #4 assigned today; due in 2½ weeks

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time
Notation
- Relations: \(R, S \)
- Tuples: \(r, s \)
- Number of tuples: \(|R|, |S|\)
- Number of disk blocks: \(B(R), B(S) \)
- Number of memory blocks available: \(M \)
- Cost metric
 - Number of I/O's
 - Memory requirement

Table scan
- Scan table \(R \) and process the query
 - Selection over \(R \)
 - Projection of \(R \) without duplicate elimination
- I/O's: \(B(R) \)
 - Trick for selection: stop early if it is a lookup by key
 - Memory requirement: 2 (+1 for double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join
- \(R \bowtie_{p} S \)
 - For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
 - \(R \) is called the outer table; \(S \) is called the inner table
 - I/O's: \(B(R) + |R| \cdot B(S) \)
 - Memory requirement: 3 (+1 for double buffering)
More improvements of nested-loop join

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O's: \(B(R) + \frac{B(R)}{M} \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot B(S)/M \)
 - Memory requirement: \(M \) (as much as possible)
- Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?
Problem: sort \(R \), but \(R \) does not fit in memory

- Pass 0: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - There are \(\left\lfloor \frac{B(R)}{M} \right\rfloor \) level-0 sorted runs
- Pass \(i \): merge \((M - 1) \) level-\((i - 1) \) runs at a time, and write out a level-\(i \) run
 - \((M - 1) \) memory blocks for input, 1 to buffer output
 - # of level-\(i \) runs = \(\left\lfloor \frac{\text{# of level-}\,(i-1) \text{ runs}}{M-1} \right\rfloor \)
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 \(\rightarrow \) 1, 4, 7
 - 5, 2, 8 \(\rightarrow \) 2, 5, 8
 - 9, 6, 3 \(\rightarrow \) 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 \(\rightarrow \) 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 \(\rightarrow \) 1, 2, 3, 4, 5, 6, 7, 8, 9
Performance of external merge sort

- Number of passes: $\left\lceil \log_{M-1} \left(\frac{B(R)}{M} \right) \right\rceil + 1$
- I/O's
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \times \log_M B(R))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off:
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O's
 - Trade-off:

Sort-merge join

- $R \bowtie_{R.A = S.B} S$
- Sort R and S by their join attributes; then merge $r, s =$ the first tuples in sorted R and S
 - Repeat until one of R and S is exhausted:
 - If $R.A > S.B$ then $s =$ next tuple in S
 - else if $R.A < S.B$ then $r =$ next tuple in R
 - else output all matching tuples, and $r, s =$ next in R and S
- I/O's: sorting $+ 2B(R) + 2B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins
Example

\[
\begin{array}{ccc}
R: & S: & R \bowtie_{R.A=S.B} S:\n\end{array}
\]
\[
\begin{array}{ccc}
\Rightarrow r_1. A = 1 & \Rightarrow s_1. B = 1 & r_1 s_1 \\
\Rightarrow r_2. A = 3 & \Rightarrow s_2. B = 2 & r_2 s_3 \\
r_3. A = 3 & s_3. B = 3 & r_2 s_4 \\
\Rightarrow r_4. A = 5 & s_4. B = 3 & r_3 s_3 \\
\Rightarrow r_5. A = 7 & \Rightarrow s_5. B = 8 & r_3 s_4 \\
r_6. A = 7 & & r_3 s_5 \\
r_7. A = 8 & & r_7 s_5
\end{array}
\]

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for \(R \) and \(S \) such that there are fewer than \(M \) of them total
- Merge and join: merge the runs of \(R \), merge the runs of \(S \), and merge-join the result streams as they are generated!

Performance of SMJ

- If SMJ completes in two passes:
 - I/O's: \(3 \cdot (B(R) + B(S)) \)
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: \(M > \frac{B(R)}{M} + \frac{B(S)}{M} \)
 - \(M > \sqrt{B(R) + B(S)} \)
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

- Union (set), difference, intersection
- Duplication elimination
- GROUP BY and aggregation
 - External merge sort
 - Trick: produce partial aggregate values in each run, and combine them during merge
 - Partial aggregate values don't always work though
 - Examples:

Hash join

- $R \bowtie_{R,A=S,B} S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join

Partitioning phase

- Partition R and S according to the same hash function on their join attributes
Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram showing the process of probing phase with R partitions on the left and S partitions on the right, streamed into memory and joined.]

Performance of (two-pass) hash join

- If hash join completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M - 1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick R to be the smaller relation, so:

 $M > \sqrt{\min(B(R), B(S))} + 1$

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - $\sqrt{\text{min}(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
 - May not always work
Duality of sort and hash

- **Divide-and-conquer paradigm**
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- **Handling very large inputs**
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- **I/O patterns**
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- **Equality predicate:** $\sigma_{A=p}(R)$
 - Use an ISAM, B$^+$-tree, or hash index on $R(A)$
- **Range predicate:** $\sigma_{A>0}(R)$
 - Use an ordered index (e.g., ISAM or B$^+$-tree) on $R(A)$
 - Hash index is not applicable

- Indexes other than those on $R(A)$ may be useful
 - Example: B$^+$-tree index on $R(A,B)$
 - How about B$^+$-tree index on $R(B,A)$?

Index versus table scan

Situations where index clearly wins:

- **Index-only queries which do not require retrieving actual tuples**
 - Example: $\pi_A(\sigma_{A>0}(R))$
- **Primary index clustered according to search key**
 - One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):
- Consider $\sigma_{A > v} (R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
- Idea: use a value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve S with $s.B = r.A$
 - Output TS
- I/O’s: $B(R) + |R|$: (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
Summary of tricks

- **Scan**
 - Selection, duplicate-preserving projection, nested-loop join

- **Sort**
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

- **Hash**
 - Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

- **Index**
 - Selection, index nested-loop join, zig-zag join