Query Optimization

CompSci 316
Introduction to Database Systems

Announcements (Thu. Nov. 21)

- Homework #4 due in a week
- Project
 - Milestone #2 feedback will be emailed by this weekend
 - Demo period: Dec. 9-11; you will be contacted by email regarding the sign-up process
 - Public demo slots: Dec. 5; email me if you are interested
- Final exam 9am-12pm Wednesday Dec. 11
 - Open book, open notes
 - Focus on the second half of the course
 - Sample final available soon

Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: × and ⋈ are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert \(\sigma_p \times \) to/from \(\bowtie_R \): \(\sigma_p(R \times S) = R \bowtie_R S \)
- Merge/split \(\pi \): \(\pi_{L_1}(\sigma_{p_1} R) = \sigma_{p_1 \cdot L_1 \cdot p_2} R \)
- Merge/split \(\pi \): \(\pi_{L_1}(\sigma_{p_2} R) = \pi_{L_1} \pi_{L_2} R \), where \(L_1 \subset L_2 \)
- Push down/pull up \(\sigma \):
 \[\sigma_{p \cdot L_p \cdot p_2}(R \bowtie_R S) = (\sigma_{p \cdot L_p} R) \bowtie_R (\sigma_{p_2 \cdot L_2} S) \]

 - \(p_1 \) is a predicate involving only \(R \) columns
 - \(p_2 \) is a predicate involving only \(S \) columns
 - \(p \) and \(p' \) are predicates involving both \(R \) and \(S \) columns

- Push down \(\pi \):
 \[\pi_{L_1}(\sigma_{p_2} R) = \pi_{L_1 \cdot p_1 \cdot L_1}(\sigma_{p_2} R) \]

 - \(L' \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences…
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

- Convert \(\sigma_p \times \) to/from \(\bowtie_R \): \(\sigma_p(R \times S) = R \bowtie_R S \)
- Merge/split \(\pi \):
 \[\pi_{L_1}(\sigma_{p_1} R) = \sigma_{p_1 \cdot L_1 \cdot p_2} R \]

 - \(p_1 \) is a predicate involving only \(R \) columns
 - \(p_2 \) is a predicate involving only \(S \) columns
 - \(p \) and \(p' \) are predicates involving both \(R \) and \(S \) columns
- Push down \(\pi \):
 \[\pi_{L_1}(\sigma_{p_2} R) = \pi_{L_1 \cdot p_1 \cdot L_1}(\sigma_{p_2} R) \]

 - \(L' \) is the set of columns referenced by \(p \) that are not in \(L \)
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';

- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;

- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));

- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
 - Process the outer query without the subquery
 - Collect bindings
 - Evaluate the subquery with bindings
 - Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones

- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\text{PROJECT \ (title) } \quad \text{MERGE-JOIN \ (CID)}
\]

\[
\text{SORT \ (CID)} \quad \text{SCAN \ (Course)} \quad \text{MERGE-JOIN \ (SID)}
\]

\[
\text{SCAN \ (Enroll)} \quad \text{SORT \ (SID)} \quad \text{SCAN \ (Student)}
\]

\[
\text{FILTER \ (name = "Bart")}
\]

- We have: cost estimation for each operator
 - Example: \(\text{SORT(CID)}\) takes \(O(B(\text{input}) \times \log N B(\text{input}))\)
 - But what is \(B(\text{input})\)?
- We need: size of intermediate results

Selections with equality predicates

\(Q: \sigma_{A=v} R\)

- Suppose the following information is available
 - Size of \(R\): \(|R|\)
 - Number of distinct \(A\) values in \(R\): \(\pi_A R\)
- Assumptions
 - Values of \(A\) are uniformly distributed in \(R\)
 - Values of \(v\) in \(Q\) are uniformly distributed over all \(R.A\) values
- \(|Q| \approx \frac{|R|}{|\pi_A R|}\)
 - Selectivity factor of \((A = v)\) is \(\frac{1}{|\pi_A R|}\)

Conjunctive predicates

\(Q: \sigma_{A=u \land B=v} R\)

- Additional assumptions
 - \((A = u)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- \(|Q| \approx \frac{|R|}{|\pi_A R| \cdot |\pi_B R|}\)
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

\[Q : \sigma_{A \neq \emptyset} R \]
\[|Q| = |R| \cdot \left(1 - \frac{1}{|\pi_A R|} \right) \]
- Selectivity factor of \(\neg \phi \) is \(1 - \) selectivity factor of \(\phi \)

\[Q : \sigma_{A \cup B \neq \emptyset} R \]
\[|Q| = |R| \cdot \left(\frac{1}{|\pi_A R|} + \frac{1}{|\pi_B R|} \right) \]

Range predicates

\[Q : \sigma_{A > r} R \]
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot \frac{1}{3} \)
- With more information
 - Largest \(R.A \) value: \(\text{high}(R.A) \)
 - Smallest \(R.A \) value: \(\text{low}(R.A) \)
 - \[|Q| \approx |R| \cdot \frac{\text{high}(R.A) - r}{\text{high}(R.A) - \text{low}(R.A)} \]
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

\[Q : R(A, B) \bowtie S(A, C) \]
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \[|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)} \]
 - Selectivity factor of \(R.A = S.A \) is \(1/\max(|\pi_A R|, |\pi_A S|) \)
Multiway equi-join

\(Q : R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)

- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

\(Q : R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)

- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R \cdot B = S \cdot B \cdot \frac{1}{\max(\pi_B R, \pi_B S)} \)
 - \(S \cdot C = T \cdot C \cdot \frac{1}{\max(\pi_C S, \pi_C T)} \)
 - \(|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(\pi_B R, \pi_B S) \cdot \max(\pi_C S, \pi_C T)} \)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:

![Diagram of a bushy plan]

- Just considering different join orders, there are \((2n-2)/(n-2)\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_1 = \sigma_{R_1}(R_1)\)
 - Start with the pair \(S_i, S_j\) with the smallest estimated size for \(S_i \bowtie S_j\)
- Repeat until no relation is left:
 - Pick \(S_k\) from the remaining relations such that the join of \(S_k\) and the current result yields an intermediate result of the smallest size
 - Minimize expected size

![Diagram of a greedy algorithm]
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \), and
 - Interesting orders produced by \(X \) “subsume” those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach