Query Optimization

CompSci 316
Introduction to Database Systems

Query optimization

- One logical plan → "best" physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the "best" one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

- Any of these will do
 1 second
 1 minute
 1 hour

Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \Join and \bowtie are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
- Merge/split σ's: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \bowtie p_2} R$
- Merge/split π's: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1} \pi_{L_2} R$, where $L_1 \subseteq L_2$
- Push down/pull up σ:
 $\sigma_{p_2 \bowtie p_1} (R \bowtie_p S) = (\sigma_{p_1} R) \bowtie_{p_2 \bowtie p_1} (\sigma_{p_2} S)$, where
 - p_1 is a predicate involving only R columns
 - p_2 is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π: $\pi_{L_1} (\sigma_p R) = \pi_{L_1} (\sigma_{p} (\pi_{L_1} R))$, where
 - L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

- Convert $\sigma_{\text{Student.name} = "Bart"}$ to $\sigma_{\text{Student.SID} = \text{Enroll.SID} \land \text{Enroll.CID} = \text{Course.CID}}$
- Push down $\sigma_{\text{Student.SID} = \text{Enroll.SID} \land \text{Enroll.CID} = \text{Course.CID}}$
- Convert $\sigma_{\text{Student.name} = "Bart"}$ to $\sigma_{\text{Student.SID} = \text{Enroll.SID} \land \text{Enroll.CID} = \text{Course.CID}}$

Announcements (Thu. Nov. 21)

- Homework #4 due in a week
- Project
 - Milestone #2 feedback will be emailed by this weekend
 - Demo period: Dec. 9-11; you will be contacted by email regarding the sign-up process
 - Public demo slots: Dec. 5; email me if you are interested
- Final exam 9am-12pm Wednesday Dec. 11
 - Open book, open notes
 - Focus on the second half of the course
- Sample final available soon
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong—consider two Bart’s, each taking two classes
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
 - Right—assuming Student.SID is a key

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll
 WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt
 FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose a CPS class is empty?

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\text{PROJECT} (\text{roll}) \\
\text{MERGE-JOIN} (\text{CID}) \\
\text{SORT} (\text{CID}) \\
\text{MERGE-JOIN} (\text{CID}) \\
\text{FILTER} (\text{same} = \text{"Bart")} \\
\text{SORT} (\text{SID}) \\
\text{SCAN} (\text{Cid}) \\
\text{SCAN} (\text{Enroll}) \\
\text{SCAN} (\text{Courses})
\]

- We have: cost estimation for each operator
 - Example: \(\text{SORT} (\text{CID})\) takes \(O(\text{B(input)}) \times \log_2 \text{B(input)}\)
 - But what is \(\text{B(input)}\)?
- We need: size of intermediate results

Conjunctive predicates

\(Q : \sigma_{A=U \land B=V} R\)

- Additional assumptions
 - \(A = U\) and \(B = V\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- \(|Q| \approx \frac{|R|}{\pi_A R} \cdot \pi_B R\)
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

\(Q : \sigma_{A=U \lor B=V} R\)

- \(|Q| \approx \frac{|R|}{\pi_A R} \cdot \left(1 - \frac{1}{\pi_A R}\right)\)
 - Selectivity factor of \(\neg p\) is \(1 - \text{selectivity factor of } p\)

Range predicates

\(Q : \sigma_{A=U} R\)

- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot \frac{1}{3}\)
- With more information
 - Largest \(R.A\) value: \(\text{high}(R.A)\)
 - Smallest \(R.A\) value: \(\text{low}(R.A)\)
 - \(|Q| \approx |R| \cdot \frac{\text{high}(R.A) - \text{low}(R.A)}{\text{high}(R.A) - \text{low}(R.A)}\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

\(Q : R(A,B) \bowtie S(A,C)\)

- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(\pi_A R \subseteq \pi_A S\), then \(\pi_A R \subseteq \pi_A S\)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx \frac{|R||S|}{\max(|\pi_A R|,|\pi_A S|)}\)
 - Selectivity factor of \(R.A = S.A\) is \(\frac{1}{\max(|\pi_A R|,|\pi_A S|)}\)
Multiway equi-join

\[Q : R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

\[What \text{ is the number of distinct } C \text{ values in the join of } R \text{ and } S? \]

\[Assumption: \text{ preservation of value sets} \]
- A non-join attribute does not lose values from its set of possible values
- That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A(R) \)
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints"
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms

Search for the best plan

- Huge search space
- "Bushy" plan example:

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n? \)
 - Significantly fewer, but still los— n! (720 for \(n = 6 \))

A greedy algorithm

- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{C}(R_i) \)
 - Start with the pair \(S_i, S_j \) with the smallest estimated size for \(S_i \bowtie S_j \)
 - Repeat until no relation is left:
 - Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size
 - Remaining relations to be joined
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y, and
 - Interesting orders produced by X “subsume” those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach