CompSci 101
Introduction to Computer Science

October 9, 2014

Prof. Rodger

Thanks to Prof. Azhar and Yossra Hamid for giving this lecture!
Announcements

• Reading for next time on calendar page
 – en.wikibooks.org/wiki/Python_Programming/Sets
 – RQ

• APT 4 is due today
 – APT 5 is out today

• Exam 1 was handed out Tuesday, grades are on Sakai, you will need to see Prof. Rodger next week to get your test back

• Today Sets

• Prof. Rodger is at a conference this week
 – http://gracehopper.org/
Python Sets

• Set – unordered collection of distinct items
 – Unordered – can look at them one at a time, but cannot count on any order
 – Distinct - one copy of each

• Operations on sets:
 – Modify: add, clear, remove
 – Create a new set: difference(-), intersection(&), union (|), symmetric_difference(^)
 – Boolean: issubset \leq, issuperset \geq

• Can convert list to set, set to list
Summary (from wikibooks)

- `set1 = set()` # A new empty set
- `set1.add("cat")` # Add a single member
- `set1.update(["dog", "mouse"])` # Add several members
- `set1.remove("cat")` # Remove a member - error if not there
- `print set1` # Iteration AKA for each element
- `for item in set1:`
 - `print item`
- `print "Item count: ", len(set1)` # Length AKA size AKA item count
- `isempty = len(set1) == 0` # Test for emptiness
- `set1 = set(["cat", "dog"])` # Initialize set from a list
- `set3 = set1 & set2` # Intersection
- `set4 = set1 | set2` # Union
- `set5 = set1 - set3` # Set difference
- `set6 = set1 ^ set2` # Symmetric difference (elements in either set but not both)
- `issubset = set1 <= set2` # Subset test
- `issuperset = set1 >= set2` # Superset test
- `set7 = set1.copy()` # A shallow copy (copies the set, not the elements)
- `set8.clear()` # Clear AKA empty AKA erase
Creating and changing a set

```python
colorList = ['red', 'blue', 'red', 'red', 'red', 'green']
colorSet = set(colorList)
smallList = list(colorSet)
colorSet.clear()
colorSet.add("yellow")
colorSet.add("red")
colorSet.add("blue")
colorSet.add("yellow")
colorSet.add("purple")
colorSet.remove("yellow")
```

- See setsEasy.py
Set Operations

```python
UScolors = set(["red", "white", "blue"])
dukeColors = set(["blue", "white"])
print dukeColors.union(UScolors)
print dukeColors | UScolors
print dukeColors.intersection(UScolors)
print dukeColors & UScolors
print dukeColors.difference(UScolors)
print dukeColors - UScolors
print UScolors - dukeColors
print dukeColors ^ UScolors
print UScolors ^ dukeColors

• See setsEasy.py
Set Examples

bit.ly/101fall14-1009-01

poloClub = set(['Mary', 'Laura', 'Dell'])
rugbyClub = set(['Fred', 'Sue', 'Mary'])

Question 1:
print [w for w in poloClub.intersection(rugbyClub)]

Question 2:
print [w for w in poloClub.union(rugbyClub)]
More Set Examples

bit.ly/101fall14-1009-02

lista = ['apple', 'pear', 'fig', 'orange', 'strawberry']
listb = ['pear', 'lemon', 'grapefruit', 'orange']
listc = [x for x in lista if x in listb]
listd = list(set(lista) | set(listb))

Question 1:
print listc

Question 2:
print listd
More Set Examples

```python
s = set(lista)
lista = ['apple', 'pear', 'fig', 'orange', 'strawberry']

```

```python
t = set(listb)
listb = ['pear', 'lemon', 'grapefruit', 'orange']
```

```python
problem1 = (s-t) | (t-s)
print problem1

problem2 = (s|t) - (s&t)
print problem2

problem3 = (s|t|(s&t))
print problem3
```
Set Operations from pictures
bit.ly/101fall14-1009-03

Question: Which picture is which operation?

A)

B)

C)

D)

E)
Given a list of strings that have the name of a course (one word), followed by last names of people in the course:

- Convert list into lists of strings of names for each course
- Find total number of people taking any course
- Find number of people taking just one course

["econ101 Abroms Curtson Williams Smith", "history230 Black Wrigley Smith", ... ]
Data for example

People Taking both Math And CompSci

Intersection

ECON101

COMPSCI101

MATH101

HISTORY230

FRENCH1
Part 1 — processList

bit.ly/101fall14-1009-04

• Given a list of strings that have the name of a course (one word), followed by last names of people in the course:
  – Convert list into lists of strings of names for each course

  
  "econ101 Abroms Curtson Williams Smith",
  "history230 Black Wrigley Smith",
  ...

  
  [[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
  [‘Black’, ‘Wrigley’, ‘Smith’, ...]]
Part 1: processList

**Input:** list of strings

[“compsci101 Smith Ye Li Lin Abroms Black”,
“math101 Green Wei Lin Williams DeLong Noell Ye Smith”,
“econ101 Abroms Curtson Williams Smith”,
“french1 Wills Wrigley Olson Lee”,
"history230 Black Wrigley Smith” ]

**Return:** list of lists (of strings)

[“Abroms”, “Curtson”, “Williams”, “Smith”],
[“Wills”, “Wrigley”, “Olson”, “Lee”],
[“Black”, “Wrigley”, “Smith”] ]
Part 2 — peopleTakingCourses
bit.ly/101fall14-1009-05

• Given a list of lists (of strings) that have the last names of people in the course:
  – Find total number of people taking any course

["econ101 Abroms Curtson Williams Smith",
"history230 Black Wrigley Smith", ... ]
[[‘Abroms’, ‘Curtson’, ‘Williams’, ‘Smith’],
[‘Black’, ‘Wrigley’, ‘Smith’, ...]]

6...
People taking Courses - Union

- ECON101
  - Curtson
  - Williams
- COMPSCI101
  - Abroms
  - Li
  - Smith
- MATH101
  - Ye
  - Lin
  - Green
  - Noell
- HISTORY230
  - Black
  - Wrigley
- FRENCH1
  - Wei
  - Yavatkar
  - Wills
  - Lee
  - Olson

Total Number Is 17
Part 2 – peopleTakingCourses

**Input:** list of lists (of strings)

[“Abroms”, “Curtson”, “Williams”, “Smith”],
[“Wills”, “Wrigley”, “Olson”, “Lee”],
[“Black”, “Wrigley”, “Smith”]]`

**Return:** list of strings (of all unique students)


**Length of list = total people taking courses**
Part 3 — unionAllSetsButMe

bit.ly/101fall14-1009-06

• Given a list of lists (of strings) that have the last names of people in the course:
  – Find number of people taking just one course
    • BUT FIRST, let's write this helper method
    • Return the union of all sets except current set

["econ101 Abroms Curtson Williams Smith",
"history230 Black Wrigley Smith", ... ]
Union all sets
But French1
Part 3 – unionAllSetsButMe

Input: list of lists (of strings)
index of current set

Return: set – union of all lists

Input:

- \[ ["Smith", "Ye", "Li", "Lin", "Abroms", "Black"] \]
- \[ ["Abroms", "Curtson", "Williams", "Smith"] \]
- \[ ["Wills", "Wrigley", "Olson", "Lee"] \]
- \[ ["Black", "Wrigley", "Smith"] \]

Return:

Part 4 — peopleTakingOnlyOneCourse
bit.ly/101fall14-1009-07

• Given a list of lists (of strings) that have the last names of people in the course:
  – Find number of people taking just one course

["econ101 Abroms Curtson Williams Smith", "history230 Black Wrigley Smith", ... ]
5
People taking Only one course

ECON101
- Curtson
- Williams

COMPSCI101
- Li
- Abroms

MATH101
- Green
- Noell
- Wei
- Delong
- Yavatkar

HISTORY230

FRENCH1
- Wills
- Lee
- Olson

Wrigley
- Black
- Smith
Part 4 – peopleTakingOnlyOneCourse

Input: list of lists (of strings)

[["Smith", "Ye", "Li", "Lin", "Abroms", "Black"],
["Abroms", "Curtson", "Williams", "Smith"],
["Wills", "Wrigley", "Olson", "Lee"],
["Black", "Wrigley", "Smith"]]

Return: list of strings
(students only taking one course)

["Li", "Green", "DeLong", "Noell", "Curtson", "Wills", "Olson", "Lee"]
APT - UniqueZoo

• How do you solve this problem?
• How is it similar to the problem we just solved
Example Data for UniqueZoo

["zebra bear fox elephant", "bear crocodile fox", "rhino elephant crocodile kangaroo", "elephant bear"]
UniqueZoo – two zoos have unique animals

- zebra
- elephant
- fox
- bear
- crocodile
- rhino
- kangaroo