Hierarchical RL

RL typically solves a single problem monolithically.

Hierarchical RL:
- Create and use higher-level macro-actions.
- Problem now contains subproblems.
- Each subproblem is also an RL problem.

Options Framework: theoretical basis for skill acquisition, learning and planning using higher-level actions (options).
The Options Framework

Basic idea:

• Define a temporally extended action as a policy.

A (Markov) option o is a policy unit:

• Initiation set $I_o : S \rightarrow \{0, 1\}$
• A termination probability $\beta_o : S \rightarrow [0, 1]$
• A policy $\pi_o : S \times A \rightarrow [0, 1]$
More Intuitively

An option o is a policy unit:
- Initiation set
- Termination condition
- Option policy
Notes

- Given R_o, learning π_o is just another (episodic) RL problem.
- Typically only need to define π_o over I_o.
- Equally, π_o could be any policy (generically, a program).
Options as Actions

Option

Problem
The resulting problem is a Semi-(Markov Decision Process). This consists of:

- **Set of states**
- **Set of options**
- **Transition model**
- **Reward function**
- **Discount factor (per step)**

In this case:
- All times are integers.
- “Semi” here means transitions can last t timesteps.
- Transition and reward function involve time taken for option to execute.
So:

Original problem: MDP.
MDP + Options = SMDP.

Options framework allows us to both express a low-level policy, and plan and learn using the higher-level SMDP.

Additionally, the ability to:

- Create new options.
- Update option policies.
- Do off-policy learning using, or for, them.
- Interrupt them ...

puts us “between MDPs and semi-MDPs”.
What are Skills For?

Lots of things!

A few salient points:

- Rewiring.
- Transfer.
- Skill-Specific Abstractions.
Rewiring

Adding an option changes the connectivity of the MDP. This affects:

- Learning and Planning.
- Exploration.
- State-visit distribution.
- Diameter of problem.

(Sutton, Precup and Singh, AIJ 1999)
Transfer

Use experience gained while solving one problem to improve performance in another.

Skill transfer:
 • Use options as mechanism for transfer.
 • Transfer components of solution.
 • Can drastically improve performance
 • ... even if it takes a lot of effort to learn them.

General principle: subtasks recur.
Example

Tasks drawn from parametrized family.
- Common features present.
- Options defined using only common features.

(a) Learning curves for agents with problem-space options.
(b) Learning curves for agents with agent-space options, with varying numbers of training experiences.

(Konidaris and Barto, IJCAI 2007)
Skill-Specific Abstractions

Common approach to solving hard problems:
 • Use an abstraction!

But
 • Many high-dimensional problems *really are* high-dimensional *if you try to solve them monolithically*
Skill-Specific Abstractions

Options provide an alternative approach:

- Split high-dimensional problem into subproblems ...
- ... such that each one supports a solution using an abstraction.

Working hypothesis: behavior is piecewise low-dimensional.
Randomly re-arranged between episodes. 120 state features.

(Konidaris and Barto, IJCAI 2009)
The Continuous Playroom

Skills: *placing each effector over an object (allow interaction)*

Available abstractions:
- x and y differences for each object-effector pair.
Experiments

Episodes

Steps

-6
-5
-4
-3
-2
-1
0
1
10^5

x 10^5

5 10 15 20 25 30 35 40

Episodes

Given Options

Given Abstractions

No Abstractions

Abstraction Selection
Skill Discovery

Discover options autonomously, through interaction with an environment.

- Typically *subgoal options*.
- This means that we must determine β_o.
- Sometimes also R_o.

The question then becomes:

- Which states are good subgoals?

There are several ways to answer this.
Betweenness Centrality

Consider an MDP as a graph.
- States are vertices.
- Edges indicate possible transition between two states.

Further, let us assume a task distribution over start states and goal pairs:
- $P_T(s, e)$

(Simsek and Barto, NIPS 2008)
Betweenness Centrality

We can define the *betweenness centrality* of a vertex (state) as:

\[
\sum_{s,e} \frac{\sigma_{se}(v)}{\sigma_{se}} w_{se}
\]

This indicates it probability of being on a shortest path from \(s\) to \(e\); if we define:

- *Shortest path* as *optimal solution*.
- \(w_{se} = P_T(s, e)\)

... then we get something sensible for RL.

(Simsek and Barto, NIPS 2008)
Betwenness Centrality

(Simsek and Barto, NIPS 2008)
Betweenness Centrality

Figure 3: Learning performance in Rooms, Shortcut, and Playroom.

(Simsek and Barto, NIPS 2008)
Betweenness Centrality

Of course:

• Knowing the MDP is cheating.
• So is knowing the distribution of problems.
• But can use this as the basis for approximation.
Continuous State Spaces

Continuous state spaces are more challenging:

- Need a goal region, not a state.
- Cannot assume $I_o = S$

For episodic tasks:

- End-of-episode is a good target.
- Can we generate more?

The point of executing a skill is either to:

- Get to a solution
- Get to another skill that might lead to a solution
Skill Chaining

Simple rule: when creating a new skill to reach a target event, make entering that skill’s initiation set a new target event.

(Konidaris and Barto, NIPS 2009)
Skill Chaining

Problems are not usually that clean.
Skill Chaining

Skill goal is a region, not a state.

Initiation set learned using classifier.

- Execute and fail:
- Execute and succeed:

Can include other target events:

- Domain knowledge
- Other heuristics
- *Still need to chain to overcome limited range*
Skill Chaining

(Konidaris and Barto, NIPS 2009)
Skill Chaining

(Konidaris and Barto, NIPS 2009)
Skill Chaining

![Graph showing the performance of different options over episodes. The graph compares the return over episodes for 'No Options', 'Given Options', and 'Skill Chaining'. The x-axis represents episodes, and the y-axis represents return, with values ranging from -16 to 0×10^4. The graph illustrates the improvement in return as episodes progress, with 'Skill Chaining' showing the best performance compared to the other options.](image-url)
Skill Chaining: Results

An example with multiple start positions.
Scaling Up

Combine skill chaining with skill-specific abstractions.

(Konidaris, Kuindersma, Grupen and Barto, NIPS 2010)
CST on the uBot

Trajectory segmented into appropriate skills + abstractions.
Follow-on Work
ARSA

Demonstration of:

- A mobile manipulator learning to solve a task
- Extracting skills from solution
- Deploying them in a new task

(Konidaris, Kuindersma, Grupen and Barto, AAAI 2011)
Training Room

Episode 1 (35x)
Acquired Skills

Skills extracted with CST:
Constructing Skill Trees for RL Agents from Demonstration, NIPS 2010.
The Test Room
The Test Room
The Test Room

[AAAI 2011]
Summary

Scaled skill acquisition to mobile manipulator:
- Skills extracted because they are useful
- Suitable for further learning (individually)
- Suitable for deployment in new problems

Acquired skills can improve a robot’s problem-solving abilities.
Meta-Summary

HRL, and options in particular, provides a framework for:

- Learning and planning with high-level actions.
- Discovering high-level actions from experience.

Key aspects to scaling up:

- Adaptively break complex tasks into simple ones.
- Skill-specific abstractions.
- Skill transfer and reuse.