Locality Sensitive Hashing

CompSci 590.04 Instructor: Ashwin Machanavajjhala

Lecture 11 : 590.04 Fall 15

Problem: Finding Duplicate Elements

- Given a set of objects
- Find objects that are near duplicates of each other.

More formally,

- Let d(x,y) be a distance function defined over pair of objects.
- Group objects such that:
 - objects within distance d1 are both present in some group objects at distance > d2 are never within the same group

Motivation: Entity Resolution

Problem of identifying and linking/grouping different manifestations of the same real world object.

Examples of manifestations and objects:

- Different ways of addressing (names, email addresses, FaceBook accounts) the same person in text.
- Web pages with differing descriptions of the same business.
- Different photos of the same object.

• ...

Motivation: Document Clustering

Belinelli's late jumper gives **Popovich** his **1000**th career w...

Yahoo Sports (blog) - 4 hours ago

Gregg **Popovich** of the San Antonio Spurs has already established himself ... Nevertheless, it's pretty cool and rare any time a coach hits **1,000** ...

Spurs' Gregg **Popovich** becomes 9th NBA coach to win **1000** games SI.com - 20 hours ago

SVG: Popovich's 1000 wins 'a great accomplishment'

Detroit Free Press - 2 minutes ago

Gregg Popovich Wins 1000th Game with Milestones Ahead & Other ...

In-Depth - Bleacher Report - 18 hours ago

Six things to know about Gregg Popovich's 1000th win

Blog - Washington Post (blog) - 20 hours ago

Raptors Beat Spurs, Deny Popovich 1000th Win

In-Depth - ABC News - Feb 8, 2015

Distance Functions

Jaccard Similarity

- If each object x is a subset F_x from some universe (e.g., a document is a set of words)
- Similarity between x and y is: $\frac{F_x \cap F_y}{F_x \cup F_v}$

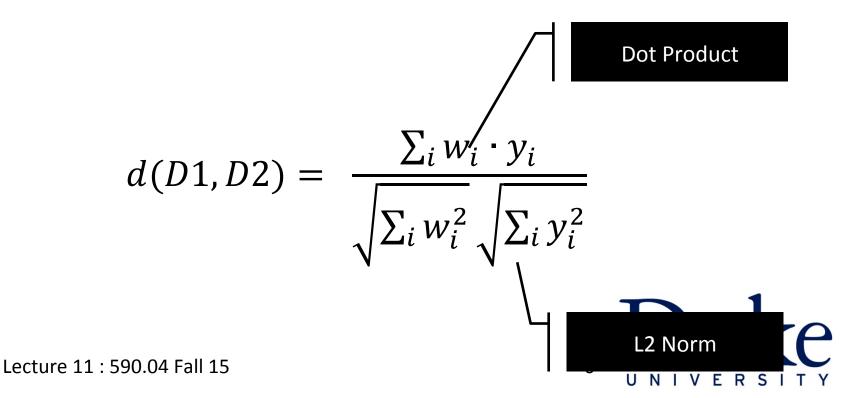
Hamming Distance

- If each object x is in {0,1}^n (e.g., If n is the number of words in the vocabulary and a 0 or 1 in position i signifies whether or not ith word in the vocabulary appears in the document)
- Similarity between x and y is: number of positions that x and y differ in

Distance Functions

Cosine Similarity

- Suppose each x is n dimensional vector of real numbers (e.g., the ith count represents the number of times the ith word in the vocabulary appears in a document)
- Similarity between w = [w1, w2, ..., wn] and y = [y1, y2, ..., yn] is given by



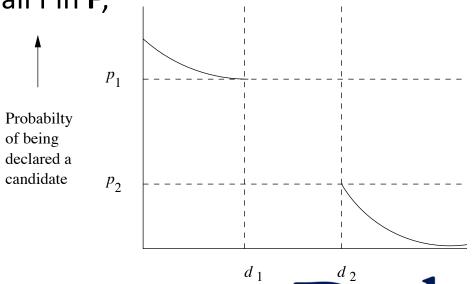
Locality Sensitive Hashing Idea

Construct a family of hash functions F.

Call x and y similar if for a randomly chosen f in F, f(x) = f(y)

Let d1 and d2 be two distances. A family of functions \mathbf{F} is said to be (d1, d2, p1, p2)-sensitive if for all \mathbf{f} in \mathbf{F} ,

- If d(x,y) < d1,
 then P[f(x) = f(y)] > p1
- If d(x,y) > d2,
 then P[f(x) = f(y)] < p2



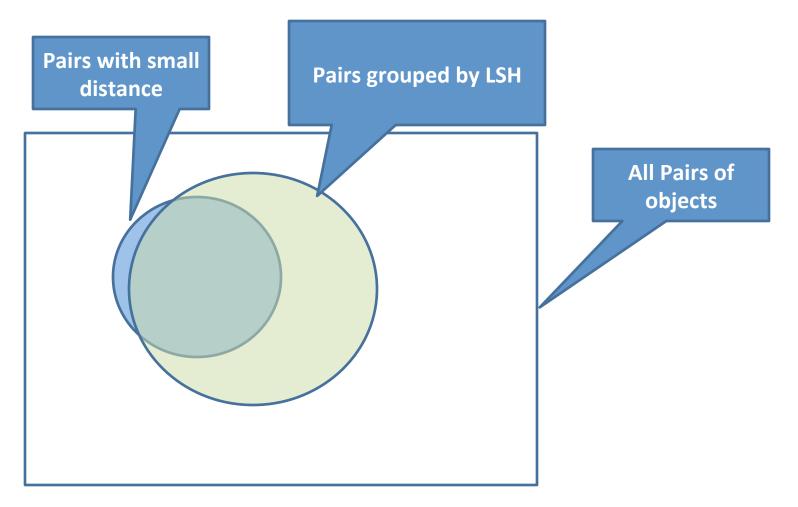
Distance

Lecture 11 : 590.04 Fall 15

LSH: Motivation

- Naïve pairwise: $|S|^2$ pairwise comparisons
 - 1000 news articles each from 1,000 different topics
 - 1 trillion comparisons
 - 11.6 CPU days (if each comparison is 1 μs)
- Mentions from different topics are unlikely to have high similarity
 - Group by topic (can possibly miss some similar pairs, but very unlikely)
 - 1 billion comparisons
 - 16 CPU minutes (if each comparison is 1 μ s)

LSH: Motivation



minHash (Minwise Independent Permutations)

- Let F_x be a set representation of object x
 - Words in the document
 - character ngrams
 - Etc.
- Let π be a random permutation of features in F_x
 - E.g., order imposed by a random hash function
- minHash(x) = minimum element in F_x according to π

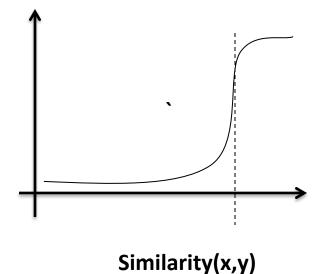
Why minHash works?

Surprising property: For a random permutation π ,

$$P(minHash(x) = minhash(y)) = \frac{F_x \cap F_y}{F_x \cup F_y}$$

How to build a blocking scheme such that only pairs with Jacquard similarity > s fall in the same block (with high prob)?

Probability that (x,y) mentions are blocked together



Duke

Blocking using minHashes

• Compute minHashes using r * k permutations (hash functions)

Signature's that match on 1 out of k bands, go to the same block.

minHash Analysis

False Negatives: (missing matches)

P(pair x,y not in the same block with Jacquard sim = s) = $(1 - s^r)^k$

should be very low for high similarity pairs

False Positives: (blocking non-matches)

P(pair x,y in the same block with Jacquard sim = s) = $k \times s^r$

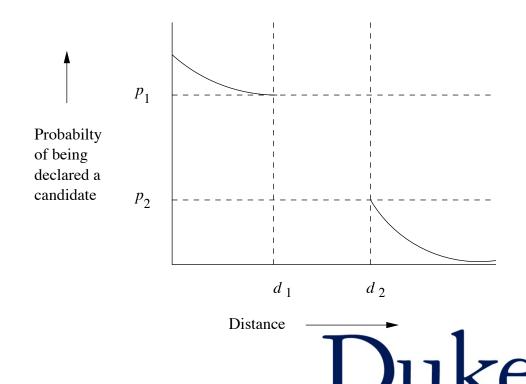
24	_		ı,	_	2	n
r	=	Э,	κ	=	Z	U

Sim(s)	P(not same block)
0.9	10 ⁻⁸
0.8	0.00035
0.7	0.025
0.6	0.2
0.5	0.52
0.4	0.81
0.3	0.95
0.2	0.994
0.1	0.9998

Locality Sensitive Hashing Functions

Let d1 and d2 be two distances. A family of functions **F** is said to be (d1, d2, p1, p2)-sensitive if for all f in **F**,

- If d(x,y) < d1,
 then P[f(x) = f(y)] > p1
- If d(x,y) > d2,
 then P[f(x) = f(y)] < p2



Lecture 11 : 590.04 Fall 15

Locality sensitive family for Jaccard distance

 minHash is one example of locality sensitive family that can strongly distinguish pairs that are close from pairs that are far.

 The family of minHash functions is a (d1, d2, 1-d1, 1-d2)-sensitive family for any d1, d2.

Amplifying a Locality-sensitive family

AND construction:

- Construct a new family F' consisting of r members of F
- f in F' = {f1, f2, ..., fr}
- f(x) = f(y) iff for all i, fi(x) = fi(y)
- If F is (d1, d2, p1, p2)-sensitive, then F' is (d1, d2, p1^r, p2^r)-sensitive

OR construction:

- Construct a new family F' consisting of b members of F
- f in F' = {f1, f2, ..., fb}
- f(x) = f(y) iff there exists i, fi(x) = fi(y)
- If F is (d1, d2, p1, p2)-sensitive,
 then F' is (d1, d2, 1-(1-p1)^b, 1-(1-p2)^b)-sensitive

Example

- Suppose F is (0.2, 0.6, 0.8, 0.4)-sensitive.
- We use AND-construction with r= 4 to create F1
- We use OR-construction with b=4 to create F2
- F2 is $(0.2, 0.6, 1-(1-0.8^4)^4, 1-(1-0.4^4)^4)$ = (0.2, 0.6, 0.875, 0.0985)-sensitive

LSH for Hamming distance

- Given two vectors x, y
- Hamming distance h(x,y) = number of positions where x and y are different

minHash: (d1, d2, 1-d1/d, 1-d2/d)-sensitive

LSH for Cosine Distance

Cosine Distance: angle between two vectors

- Locality sensitive function F:
 Pick a random vector vf.
 f(x) = f(y) is x.vf and y.vf have the same sign.
- **F** is (d1, d2, (180-d1)/180, d2/180)-sensitive
- Another method:
 Generate v in {-1, +1}^d (d is the dimensionality of x)
 f(x) = f(y) is x.vf and y.vf have the same sign.

Summary of Locality Sensitive Hashing

- Locality sensitive hashing functions can strongly distinguish pairs that are close from pairs that are far.
- AND and OR construction help amplify the distinguishing capability of locality sensitive functions.
- Used in almost all production systems that require efficient similarity computation.

