# **Joining Tables**

*CompSci 590.04* 

Instructor: Ashwin Machanavajjhala





A SQL Query walks into a bar. In the corner of the bar are two tables. The Query walks up to the tables and asks,

"Mind if I join you?"



# Why Joins?

- Cornerstone of the relation data model!
- Normalization of schema helps reduce redundancy and inconsistencies.
  - Social network: Table of edges and Table of vertices
- To reason about relationships between multiple types of entities
  - How many triangles are there in a graph
- To answer queries over data split over multiple tables
  - Need to join a table of income and table of education to get correlation between the two attributes.

## A short detour through datalog

- Suppose we have a relational schema R(A, B) and S(B, C).
  - R is a table with two attributes A and B
  - S is a table with two attributes B and C
- Natural join: Join every row in R with every row in S whenever they agree on the B attribute.

$$J(a, b, c) := R(a,b) \wedge S(b, c)$$

Triangle counting:

$$T(a, b, c) := E(a,b) E(b,c) E(c,d)$$

We can express most SQL queries in datalog

$$Z(a,c) := R(a,b) \land S(b,c) \land b='b'$$



# Question: What is the best method for computing a join

J(a,b,c) := R(a,b), S(b,c)



# Question: What is the best method for computing a join

$$J(a,b,c) := R(a,b), S(b,c)$$

Many techniques are known (this is a 40 year old problem)!

- X Nested Loop Join (X = "", Block, Index, ...)
- Hash Join
- Sort Merge Join
- ...



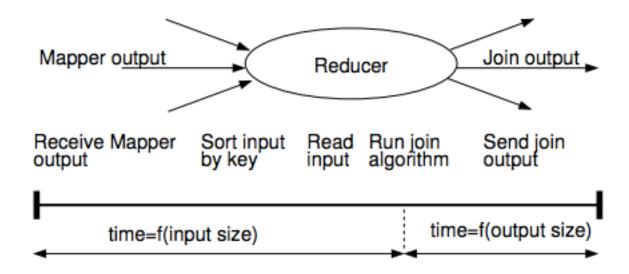
## Joining 2 tables in parallel systems

#### **Hash Join:**

- Hash records to reducers
- Join in the reducer.

#### **Fragment Replicated Join:**

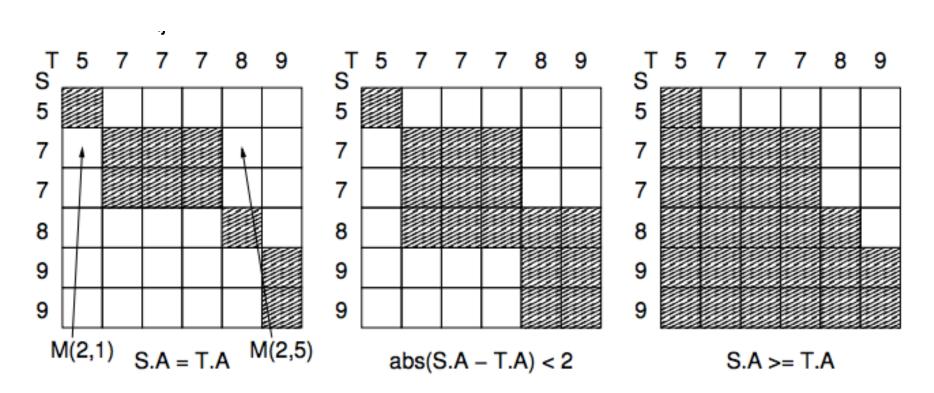
- When one of the tables is small enough to fit in memory.
- Replicate the "small" table to all mappers containing the other "large" table.


#### Merge Join:

- When two datasets are already sorted on the join key
- Use sort merge join.



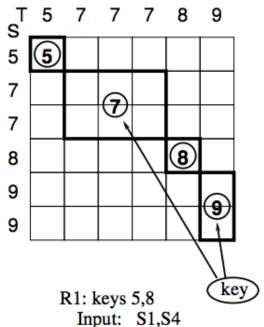
### Join as an optimization problem


- Objective: minimize job completion time
- Cost at a reducer:



- Input-size dominated: Reducer input processing time is large
- Output-size dominated: Reducer output processing time is large




#### Join Matrix



Goal: find a mapping between join matrix cells to reducers that minimizes completion time.



#### Join Alternatives



T1,T5

Output: 2 tuples

R2: key 7

Input: S2,S3

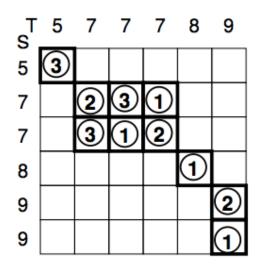
T2,T3,T4

Output: 6 tuples

R3: key 9

Input: S5,S6

T6


Output: 2 tuples

max-reducer-input = 5 max-reducer-output = 6

- Standard join algorithm
- Group both tables by the key, send all tuples with same key to a single reducer
- Skew in 7 leads to long completion time.



#### Join Alternatives



Fine grained load balancing.

Divide the cells in the join matrix equally amongst reducers

Leads to replication of tuples to multiple reducers

Higher communication cost

R1: key 1

Input: S2,S3,S4,S6

T3,T4,T5,T6

Output: 4 tuples

R2: key 2

Input: S2,S3,S5

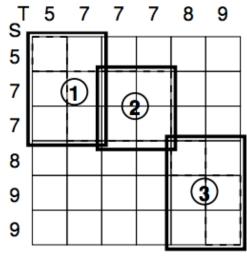
T2,T4,T6

Output: 3 tuples

R3: key 3

Input: S1,S2,S3

T1,T2,T3


Output: 3 tuples

max-reducer-input = 8 max-reducer-output = 4

15



#### Join Alternatives



Best of both worlds

Key 7 is broken into two different reducers

R1: key 1

Input: S1,S2,S3

T1,T2

Output: 3 tuples

R2: key 2

Input: S2,S3

T3,T4

Output: 4 tuples

R3: key 3

Input: S4,S5,S6

T5,T6

Output: 3 tuples

max-reducer-input = 5 max-reducer-output = 4 Limits replication of input as well as reduces skew



## **General Strategy**

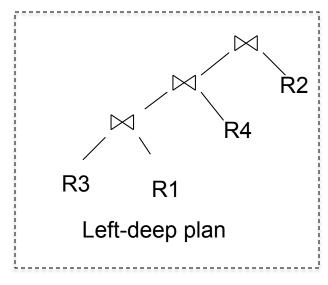
- Identify the regions in the join matrix that appear in the join
  - Sufficient to identify a superset of the shaded cells in the join matrix

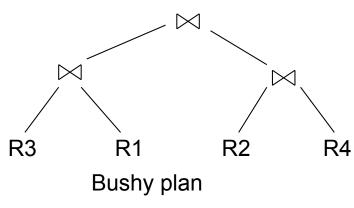
 Map regions of the join matrix to reducers such that each shaded cell is covered by a reducer.



## Multi-way Joins

```
J(a,b,c) := R(a,b) S(b,c) T(a,c)
```


```
//This is triangle counting
// Suppose each table has the same size N
```




### Multi-way Joins

J(a,b,c) := R(a,b) S(b,c) T(a,c)

- Historically databases designers decided that the best way to handle multi-way joins is to do them one pair at a time.
  - For efficiency reasons.



