Worst Case Optimal Joins

CompSci 590.04
Instructor: Ashwin Machanavajjhala
Multi-way Joins

\[J(a,b,c) :\neg R(a,b) S(b,c) T(a,c) \]

- Historically databases designers decided that the best way to handle multi-way joins is to do them one pair at a time.
 - For efficiency reasons.

Left-deep plan

Bushy plan
How fast is this approach?

\[R = \{a_0\} \times \{b_0, \ldots, b_m\} \cup \{a_0, \ldots, a_m\} \times \{b_0\} \]

\[S = \{b_0\} \times \{c_0, \ldots, c_m\} \cup \{b_0, \ldots, b_m\} \times \{c_0\} \]

\[T = \{a_0\} \times \{c_0, \ldots, c_m\} \cup \{a_0, \ldots, a_m\} \times \{c_0\} \]
How fast is this approach?

\[
R = \{a_0\} \times \{b_0, \ldots, b_m\} \cup \{a_0, \ldots, a_m\} \times \{b_0\}
\]

\[
S = \{b_0\} \times \{c_0, \ldots, c_m\} \cup \{b_0, \ldots, b_m\} \times \{c_0\}
\]

\[
T = \{a_0\} \times \{c_0, \ldots, c_m\} \cup \{a_0, \ldots, a_m\} \times \{c_0\}
\]

- Each instance has \(2m+1\) rows.
- \(J(a, b, c)\) has \(3m+1\) rows
- Any pairwise join (e.g., \(J_1(a,b,c) = R(a,b), S(b,c)\)) has size \(m^2 + m\)
What does this mean for triangle counting?

- Every database system necessarily takes $O(N^2)$
 - Ignoring log terms

- Find all pairs (b,c) are connected with a

- Check if (b,c) is an edge.

- Is this the best we can do?
Detour: Can Sampling Help joins?

- Sample(Join(R,S)) \neq Join(Sample(R), Sample(S))

\[R = \{(a, x_0)\} \cup \{b\} \times \{x_1, \ldots, x_n\} \]
\[S = \{(b, y_0)\} \cup \{a\} \times \{y_1, \ldots, y_n\} \]

- In R \times S: Half the records have ‘a’ and half the records have ‘b’

- In Sample(R): probability ‘a’ appears is very small.
Back to triangle counting?

• Every database system necessarily takes $O(N^2)$
 – *Ignoring log terms*

• Find all pairs (b,c) are connected with a
• Check if (b,c) is an edge.

• Is this the best we can do?
We can do better!

• ... not only for triangle counting, but it seems database systems have been doing multi-way joins suboptimally for 40 years!!!

• Triangle counting can be solved in $O(N^{1.5})$, and so can any join of the form $R(a,b) S(b,c) T(a,c)$.
How?

• Is there an $O(N)$ algorithm for the following join problem:

$$R = \{a_0\} \times \{b_0, \ldots, b_m\} \cup \{a_0, \ldots, a_m\} \times \{b_0\}$$

$$S = \{b_0\} \times \{c_0, \ldots, c_m\} \cup \{b_0, \ldots, b_m\} \times \{c_0\}$$

$$T = \{a_0\} \times \{c_0, \ldots, c_m\} \cup \{a_0, \ldots, a_m\} \times \{c_0\}$$
Power of Two Choices: Heavy vs Light

• Consider attribute A

• For all ai not equal to a0, there is exactly one tuple in R (ai, b0) and one tuple in T (ai, c0)

\[\text{Compute } \sigma_{A=a_i}(R) \bowtie \sigma_{A=a_i}(T) \text{ and filter the results by probing against } S \]

• The above strategy is bad for a0
 – Joining tables R and T on a0 results in an intermediate of \(N^2 \).
Power of Two Choices: Heavy vs Light

• Consider attribute A

• For all ai not equal to a0, and one tuple in T (ai, c0)

 Compute $\sigma_{A=a_i}(R) \bowtie \sigma_{A=a_i}(T)$ and filter the results by probing against S

• For ai = a0:

 Consider each tuple in $(b, c) \in S$ and check if $(a_i, b) \in R$ and $(a_i, c) \in T$.

There are O(N) values ai, each resulting in a single join record (ai, b0, c0). Checking whether (b0, c0) is in S is O(1) ... assuming an index

There are N rows in S. Again, checking (ai, b) is in R and (ai, c) is in T takes O(1) ... assuming an index
Power of Two Choices: Heavy vs Light

- Consider attribute A

- For all ai not equal to a0, and one tuple in T (ai, c0)

 Compute \(\sigma_{A=a_i}(R) \bowtie \sigma_{A=a_i}(T) \) and filter the results by probing against S

- For ai = a0:

 Consider each tuple in \((b, c) \in S \) and check if \((a_i, b) \in R \) and \((a_i, c) \in T \).

Such ai’s are called light nodes. Traditional join processing works here.

Such ai’s are called heavy nodes. Need to compute the join jointly.
Power of Two Choices Algorithm

Algorithm 1 Computing Q_Δ with power of two choices.

Input: $R(A, B), S(B, C), T(A, C)$ in sorted order

1: $Q_\Delta \leftarrow \emptyset$
2: $L \leftarrow \pi_A(R) \cap \pi_A(T)$
3: For each $a \in L$ do
4: \quad If $|\sigma_{A=a}R| \cdot |\sigma_{A=a}T| \geq |S|$ then
5: \quad \quad For each $(b, c) \in S$ do
6: \quad \quad \quad If $(a, b) \in R$ and $(a, c) \in T$ then
7: \quad \quad \quad \quad Add (a, b, c) to Q_Δ
8: \quad else
9: \quad \quad For each $b \in \pi_B(\sigma_{A=a}R) \land c \in \pi_C(\sigma_{A=a}T)$ do
10: \quad \quad \quad If $(b, c) \in S$ then
11: \quad \quad \quad \quad Add (a, b, c) to Q_Δ
12: Return Q
Runtime Analysis

• Computing L takes:

\[\min (|\sigma_{A=a}R| \cdot |\sigma_{A=a}T|, |S|) \]

• Rest of the algorithm takes:

\[\sum_{a \in L} \min (|\sigma_{A=a}R| \cdot |\sigma_{A=a}T|, |S|) \leq \sqrt{|S|} \cdot \sqrt{|R|} \cdot \sqrt{|T|} \]
Can we do better?

• NO!

• A matching lower bound by Atserias Grohe and Marx (or the AGM bound)
AGM Bound

- Let V denote the set of relations
- Every relation is a subset of attributes F (or a hyper edge)

- Let x be a vector of weights associated with each relation (hyperedge)

- **Fractional Edge Cover:**

$$\left\{ x \mid \sum_{F: v \in F} x_F \geq 1, \forall v \in V, x \geq 0 \right\}$$
AGM Bound

\[|Q| = | \bigotimes_{F \in \mathcal{E}} R_F | \leq \prod_{F \in \mathcal{E}} |R_F|^{|x_F|} \]
Examples

• Triples query

• Best fractional cover assigns weight 0.5 to each relation

• Join size is at most \((|R| \cdot |S| \cdot |T|)^{0.5}\)

• Another fractional cover assings 0 to relation S and 1 each to R and T

• Join size is at most \(|R| \cdot |T|\)
Examples

- J(a,b,c,d) :- R(a,b,) S(b,c) T(c,d) U(a,c) X(a,d) Y(b,d) Z(c,d)

- One cover is assigning weight of 1/(n-1) to all relations

- If all relations have size N, Join size is at most N^{n/2}
Tightest AGM Bound

• Answer to the following program

\[
\begin{align*}
\min & \quad \sum_{F \in \mathcal{E}} (\log_2 |R_F|) \cdot x_F \\
\text{s.t.} & \quad \sum_{F: v \in F} x_F \geq 1, v \in \mathcal{V} \\
& \quad x \geq 0
\end{align*}
\]

• Answer is called the fractional edge cover number \(\rho^*(Q, \mathcal{D}) \)

\[
|Q| \leq 2^{\rho^*(Q, \mathcal{D})}
\]
Multi-way Joins in Parallel Systems

\[J(a,b,c) :- R(a,b) \land S(b,c) \land T(a,c) \]

- Historically databases designers decided that the best way to handle multi-way joins is to do them one pair at a time.
 - For efficiency reasons.

Left-deep plan

Bushy plan

Lecture 19 : 590.04 Fall 15
Summary

• We have been doing multiway joins wrong for 4 decades.

• Worstcase optimal joins work by carefully identifying skew in the data and using different algorithms depending on the skew of the tuple.

• Bushy multiway joins maybe useful in parallel settings.