Sampling from Databases

CompSci 590.04
Instructor: AshwinMachanavajjhala
Recap

• Given a set of elements, random sampling when number of elements N is known is easy *if you have random access to any arbitrary element*
 – Pick n indexes at random from $1 \ldots N$
 – Read the corresponding n elements

• Reservoir Sampling: If N is unknown, or if you are only allowed sequential access to the data
 – Read elements one at a time. Include t^{th} element into a reservoir of size n with probability n/t.
 – Need to access at most $n(1+\ln(N/n))$ elements to get a sample of size n
 – Optimal for any reservoir based algorithm
Today’s Class

• In general, sampling from a database where elements are only accessed using indexes.
 – B⁺-Trees
 – Nearest neighbor indexes

• Estimating the number of restaurants in Google Places.
B+ Tree

- Data values only appear in the leaves
- Internal nodes only contain keys
- Each node has between $f_{\text{max}}/2$ and f_{max} children
 - $f_{\text{max}} = \text{maximum fan-out of the tree}$
- Root has 2 or more children
Problem

• How to pick an element uniformly at random from the \(B^+ \) Tree?
Attempt 1: Random Path

Choose a random path
- Start from the root
- Choose a child uniformly at random
- Uniformly sample from the resulting leaf node

- Will this result in a random sample?
Attempt 1: Random Path

Choose a random path
• Start from the root
• Choose a child uniformly at random
• Uniformly sample from the resulting leaf node

• Will this result in a random sample?

NO.
Elements reachable from internal nodes with low fanout are more likely.
Attempt 2: Random Path with Rejection

- Attempt 1 will work if all internal nodes have the same fan-out

- Choose a random path
 - Start from the root
 - Choose a child uniformly at random
 - Uniformly sample from the resulting leaf node

- Accept the sample with probability \(\prod_{i \in \text{path}} \frac{f_i}{f_{\max}} \)
Attempt 2 : Correctness

- Any root to leaf path is picked with probability: \(\prod_{i \in \text{path}} \frac{f_i}{f_{\text{max}}} \)

- The probability of including a record given the path: \(\prod_{i \in \text{path}} \frac{1}{f_i} \)
Attempt 2 : Correctness

• Any root to leaf path is picked with probability:

\[
\prod_{i \in \text{path}} \frac{f_i}{f_{\text{max}}}
\]

• The probability of including a record given the path:

• The probability of including a record:

\[
\prod_{i \in \text{path}} \frac{1}{f_i} = \frac{1}{f_{\text{max}}}
\]
Attempt 3 : Early Abort

Idea: Perform acceptance/rejection test at each node.

• Start from the root
• Choose a child uniformly at random
• Continue the traversal with probability: $\frac{f_i}{f_{\text{max}}}$

• At the leaf, pick an element uniformly at random, and accept it with probability: $\frac{\text{# of elements in leaf}}{\text{max # elements in leaf}}$

Proof of correctness: same as previous algorithm
Attempt 4: Batch Sampling

- Repeatedly sampling n elements will require accessing the internal nodes many times.
Attempt 4: Batch Sampling

• Repeatedly sampling n elements will require accessing the internal nodes many times.

Perform random walks simultaneously:
• At the root node, assign each of the n samples to one of its children uniformly at random
 – $n \rightarrow (n_1, n_2, \ldots, n_k)$
• At each internal node,
 – Divide incoming samples uniformly across children.
• Each leaf node receives s samples. Include each sample with acceptance probability

$$\prod_{i \in \text{path}} \frac{f_i}{f_{\text{max}}}$$
Attempt 4 : Batch Sampling

- Problem: If we start the algorithm with n, we might end up with fewer than n samples (due to rejection)
Attempt 4 : Batch Sampling

• Problem: If we start the algorithm with \(n \), we might end up with fewer than \(n \) samples (due to rejection)

• Solution: Start with a larger set

\[n' = \frac{n}{\beta^{h-1}} \]

where \(\beta \) is the ratio of average fanout and \(f_{\text{max}} \)
Summary of B⁺-tree sampling

- Randomly choosing a path weights elements differently
 - Elements in the subtree rooted at nodes with lower fan-out are more likely to be picked than those under higher fan-out internal nodes

- Accept/Reject sampling helps remove this bias.
Nearest Neighbor indexes
Problem Statement

Input:
• A database D that can’t be accessed directly, and where each element is associated with a geo location.
• A nearest neighbor index (elements in D near \(<x, y> \))
 – Assumption: index returns k elements closest to the point \(<x,y> \)

Output
• Estimate \(\frac{1}{|D|} \sum_{d \in D} f(d) \)
Problem Statement

Input:
- A database D that can’t be accessed directly, and where each element is associated with a geo location.
- A nearest neighbor index (elements in D near \(<x, y> \))
 - Assumption: index returns k elements closest to the point \(<x,y> \)

Output
- Estimate \(\frac{1}{|D|} \sum_{d \in D} f(d) \)

Applications
- Estimate the size of a population in a region
- Estimate the size of a competing business’ database
- Estimate the prevalence of a disease in a region
Attempt 1: Naïve geo sampling

For $i = 1$ to N

- Pick a random point $p_i = <x,y>$
- Find element d_i in D that is closes to p_i
- Return $\hat{f}(D) = \frac{1}{N} \sum_{i} f(d_i)$
Problem?

Elements d_7 and d_8 are much more likely to be picked than d_1.

Voronoi Cell: Points for which d_4 is the closest element.
Voronoi Decomposition

Perpendicular bisector of d_4, d_3
Voronoi Decomposition

\[P[\text{sampling } d_i] = \frac{\text{area}(\text{Vor}(d_i))}{\text{total area}} \]
Voronoi decomposition of Restaurants in US
Attempt 2: Weighted sampling

For $i = 1$ to N

- Pick a random point $p_i = <x, y>$
- Find element d_i in D that is closest to p_i

Return

$$\hat{f}(D) = \frac{1}{N} \sum_{i} \left(f(d_i) \cdot \frac{\text{total area}}{\text{area(Vor}(d_i)))} \right)$$
Attempt 2: Weighted sampling

For i = 1 to N

- Pick a random point \(p_i = <x, y> \)
- Find element \(d_i \) in D that is closest to \(p_i \)

\[
\hat{f}(D) = \frac{1}{N} \sum_i \left(f(d_i) \cdot \frac{\text{total area}}{\text{area}(\text{Vor}(d_i))} \right)
\]

Problem:
We need to compute the area of the Voronoi cell.
We do not have access to other elements in the database.
Using index to estimate Voronoi cell

- Find nearest point
- Compute perpendicular bisector
- a_0 is a point on the Voronoi cell.
Using index to estimate Voronoi cell

- Find a point on \((a_0, b_0)\) which is just inside the Voronoi cell.
 - Use binary search
 - Recursively check whether mid point is in the Voronoi cell
Using index to estimate Voronoi cell

- Find nearest points to a_1
 - a_1 has to be equidistant to one point other than e_0 and d
- Next direction is perpendicular to $(e_1, d)
Using index to estimate Voronoi cell

- Find nearest points to a_1
 - a_1 has to be equidistant to one point other than e_0 and d
- Next direction is perpendicular to (e_1, d)
- Find next point ...
- ... and so on ...

Lecture 2 : 590.04 Fall 15
Using index to estimate Voronoi cell

- Find nearest points to \(a_1 \)
 - \(a_1 \) has to be equidistant to one point other than \(e_0 \) and \(d \)
- Next direction is perpendicular to \((e_1, d) \)
- Find next point ...
- ... and so on ...
Number of samples

- Identifying each a_i requires a binary search
 - If L is the max length of (a_i, b_i), then a_{i+1} can be computed with ε error in $O(\log (L/\varepsilon))$ calls to the index

- Identifying the next direction requires another call to the index

- If number of edges of Voronoi cell = k, total number of calls to the index = $O(K \log(L/\varepsilon))$

- Average number of edges of a Voronoi cell < 6
 - Assuming general position ...
Summary

• Many web services allow access to databases using nearest neighbor indexes.

• Showed a method to sample uniformly from such databases.

• Next class: Monte Carlo Estimation for #P-hard problems.
References