Markov Chains and MCMC

CompSci 590.04
Instructor: AshwinMachanavajjhala
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Announcement

* First assignment has been posted
— Please work on it in groups of 2 or 3
— Involves accessing Twitter for information
— Only allowed a restricted number of API calls to Twitter a day

— So do not delay the assignment till the last minute.

 Due date: Friday Sep 11, 11:59 pm
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Recap: Monte Carlo Method

If U is a universe of items, and G is a subset satisfying some
property, we want to estimate |G|

— Either intractable or inefficient to count exactly

Fori=1toN
* Choose u € U, uniformly at random

e (CheckwhetherueG?
 LetX =1ifuegG, X, =0 otherwise

A 2i X
Cc = |U|-
Return |U| N
u(l —p) G|
Variance: |U| ,where | = —
VN U
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Recap: Monte Carlo Method

When is this method an FPRAS?

|U| is known and easy to uniformly sample from U.

Easy to check whether sampleisin G

|U|/|G] is small ... (polynomial in the size of the input)

Theorem:

V0<e<150<8<1if N> —

then,P|(1 —&)|G| < C < (1 +¢)
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Recap: Importance Sampling

In certain case |G| << |U|[, hence the number of samples is not
small.

Suppose q(x) is the density of interest, sample from a different
approximate density p(x)
q(x)

ff(x)q(x)dxz ff(x)( x ))p(x)dx
q(x)
p(x)

q(X;)
& p(X;)’

=0
where X; are sampled from p(x) D k
5 UKC
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’ N
Hence,ff(x)q(x)dx =~ N



Today’s Class

e Markov Chains

 Markov Chain Monte Carlo sampling
— a.k.a. Metropolis-Hastings Method.

— Standard technique for probabilistic inference in machine learning, when
the probability distribution is hard to compute exactly
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Markov Chains

* Consider a time varying random process which takes the
value X; at time t

— Values of X, are drawn from a finite (more generally countable) set
of states Q.

* {Xy ... X... X, }is @ Markov Chain if the value of
X, only depends on X, ,
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Transition Probabilities

* Pr[X.,; =s; | X;=s], denoted by P(i,j), is called the transition
probability
— Can be represented as a |Q]| x | Q| matrix P.
— P(i,j) is the probability that the chain moves from state i to state j

* Letm(t) = Pr[X, =s] denote the probability of reaching state i at
time t

i (t) = Pr[Xt = sj]
= Z Pr|X; = sj|Xe1 = 8] PrlXe—q = 5]

= Z P@i,j) - Pr[X,_, = s/] Z P@i, ) (t — 1)
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Transition Probabilities

* Pr[X.,; =s; | X;=s], denoted by P(i,j), is called the transition
probability
— Can be represented as a |Q]| x | Q| matrix P.
— P(i,j) is the probability that the chain moves from state i to state j

* If m(t) denotes the 1x|Q| vector of probabilities of reaching all
the states at time t,

w(t) = m(t —1)P

Duke

Lecture 4 : 590.04 Fall 15
UNIVERSITY



Example

e Suppose Q = {Rainy, Sunny, Cloudy}
 Tomorrow’s weather only depends on today’s weather.

— Markov process
Pr[X.,; = Sunny | X, = Rainy] = 0.25

0.5 0.25 0.25
P=105 0 0.5
0.25 0.25

Pr[X.,, = Sunny | X, =Sunny] =0

No 2 consecutive days of sun (Seattle?)
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Example

Suppose Q = {Rainy, Sunny, Cloudy}

Tomorrow’s weather only depends on today’s weather.
— Markov process

P= 105 0 0.5

0.25 0.25 0.5

0.5 0.25 0.25]

Suppose today is Sunny. 7(0) =[0 1 0]
What is the weather 2 days from now?

n(2) = m(0)P* =[0.375 0.25 0.375]
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Example

Suppose Q = {Rainy, Sunny, Cloudy}

Tomorrow’s weather only depends on today’s weather.
— Markov process

P= 105 0 0.5

0.25 0.25 0.5

0.5 0.25 0.25]

Suppose today is Sunny. 7(0) =[0 1 0]
What is the weather 7 days from now?

n(7) = m(0)P” =[0.4 0.2 0.4]
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Example

Suppose Q = {Rainy, Sunny, Cloudy}

Tomorrow’s weather only depends on today’s weather.
— Markov process

P= 105 0 0.5

0.25 0.25 0.5

0.5 0.25 0.25]

Suppose today is Rainy. m(0) =[1 0 0]

What is the weather 2 days from now?
w(2) = m(0)P?* =[0.4375 0.1875 0.375]

Weather 7 days from now?
n(7) = m(0)P” =[0.4 0.2 0.4]
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Example

0.5 0.25 0.25
P=|05 0 0.5]
0.25 0.25 0.5
m(0) = [0 1 0] n(7) = m(0)P” =[0.4 02 0.4]
m(0) =[1 0 0] n(7) = m(0)P” =[0.4 0.2 0.4]

After sufficient amount of time the expected weather distribution is
independent of the starting value.

Moreover, m(7) = m(8) = m(9) =--=[04 02 0.4]
This is called the stationary distribution.
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Stationary Distribution

n is called a stationary distribution of the Markov Chain if

T = 1P

* That is, once the stationary distribution is reached, every

subsequent X. is a sample from the distribution it

How to use Markov Chains:

Suppose you want to sample from a set |Q|, according to distribution 1t
Construct a Markov Chain (P) such that mtis the stationary distribution

Once stationary distribution is achieved, we get samples from the correct
distribution.
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Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state jcan be reached from any stateiin some

finite number of steps.
P ]
0 0 25 0 75
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Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state jcan be reached from any stateiin some

finite number of steps.
P ]
0 0 25 0 75

* Aperiodic: A chain is not forced into cycles of fixed length
between certain states 0 0 05 05]

p—|0 0 05 05
05 05 0 0

0.5 0.5 0 0 .

Duke

UNIVYERSITY

Lecture 4 : 590.04 Fall 15



Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state jcan be reached from any stateiin some
finite number of steps.

* Aperiodic: A chain is not forced into cycles of fixed length
between certain states

Theorem: For every ergodic Markov chain, there is a unique vector
nt such that for all initial probability vectors m(0),

lim, ., w(t) = lim,,,m(0)P* ==
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Sufficient Condition: Detailed Balance

* |n a stationary walk, for any pair of states j, k, the Markov Chain is
as likely to move from j to k as from k to j.

m;P(j, k) = mP(k,j)

* Also called reversibility condition.
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Example: Random Walks

 Consider a graph G = (V,E), with weights on edges (w(e))

Random Walk:
e Start at some node u in the graph G(V,E)

* Move from node u to node v with probability proportional to
w(u,v).

Random walk is a Markov chain
* State space =V

e P(uyv)= w(uv)/Zw(u,v) if(uv)eE
= 0 if(u,v)isnotinE
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Example: Random Walk

Random walk is ergodic if:

finite number of steps.

If G is connected.

between certain states

If G is not bipartite
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[ 0 0
0 0
0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5
0 0

0 0 .

Irreducible: A statejcan be reached from any stateiin some

O 025 075] x

Aperiodic: A chain is not forced into cycles of fixed length
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Example: Random Walk

Uniform random walk:
* Suppose all weights on the graph are 1

 P(u,v) =1/deg(u) (or 0)

Theorem: If G is connected and not bipartite, then the stationary
distribution of the random walk is

_ deg (u)/2|E|

u
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Example: Random Walk

Symmetric random walk:
e Suppose P(u,v) = P(v,u)

Theorem: If G is connected and not bipartite, then the stationary
distribution of the random walk is

=)
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Stationary Distribution

n is called a stationary distribution of the Markov Chain if

T = 1P

* That is, once the stationary distribution is reached, every

subsequent X. is a sample from the distribution it

How to use Markov Chains:

Suppose you want to sample from a set |Q|, according to distribution 1t
Construct a Markov Chain (P) such that 1t is the stationary distribution

Once stationary distribution is achieved, we get samples from the correct
distribution.
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Metropolis-Hastings Algorithm (MCMC)

* Suppose we want to sample from a complex distribution
f(x) = p(x) / K, where K is unknown or hard to compute

 Example: Bayesian Inference
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Metropolis-Hastings Algorithm

Start with any initial value x,, such that p(x,) >0

Using current value x, , sample a new point according some
proposal distribution q(x, | x, ;)

p(x:) q(Xt—q |xt))

Compute a@(X¢|xi—q) = min(l,
Pu et P(Xe—1) q(X¢|xe—q)

With probability a accept the move to x,,
otherwise reject x,
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Why does Metropolis-Hastings work?

Metropolis-Hastings describes a Markov chain with transition
probabilities:

p(y) q(xly))

P(x,y) = q(y [x) min (1’p(x)q(y|x)

We want to show that f(x) = p(x)/K is the stationary distribution

Recall sufficient condition for stationary distribution:

T[]P(],k) — T[}cp(k;j)

Duke
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Why does Metropolis-Hastings work?

* Metropolis-Hastings describes a Markov chain with transition
probabilities:

p(y) q(xly))

P(x,y) = q(y [x) min (1’p(x)q(y|x)

o Sufficient to show: p(x)P(x,y) = p(y)P(y,x)
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Proof: Case 1

p(y) q(xly))

P(x,y) = q(y [x) min (1’p(x)q(y|x)

e Suppose Pqxly) = p(x)qy|x)

* Then, P(x,y) = aly | x)

e Therefore

P(x,y)p(x) = aly | x) p(x) = p(y) alx | y) = P(y,x) p(y)
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Proof: Case 2

3 (., P q(x|y)
P(x.y) = qbylx) min (1'p(x)q(ylx))

Suppose,  p¥)qxly) > p(x) q(y|x)
p(x)q(y|x)

p(¥)q(xly)

Then, a(ylx) =1, a(xly) =

Py, x)p(y) = qx|y)alx|y)p(y)

3 p(x)q(ylx) B
= q(xly)p(y)q(xly)p(y) =px)q(y|x)

=pX)q(y|x)alylx) = p(x)P(x,y)

* Proof of Case 3 is identical.
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When is stationary distribution reached?

* Next class ...
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