Markov Chains and MCMC

CompSci 590.04 Instructor: AshwinMachanavajjhala

Lecture 4:590.04 Fall 15

Announcement

- First assignment has been posted
 - Please work on it in groups of 2 or 3
 - Involves accessing Twitter for information
 - Only allowed a restricted number of API calls to Twitter a day
 - So do not delay the assignment till the last minute.
- Due date: Friday Sep 11, 11:59 pm

Lecture 4 : 590.04 Fall 15

Recap: Monte Carlo Method

- If U is a universe of items, and G is a subset satisfying some property, we want to estimate |G|
 - Either intractable or inefficient to count exactly

For i = 1 to N

- Choose u ε U, uniformly at random
- Check whether u ε G?
- Let $X_i = 1$ if $u \in G$, $X_i = 0$ otherwise

Return
$$\hat{C} = |U| \cdot \frac{\sum_{i} X_{i}}{N}$$

Variance:
$$|U| \frac{\mu(1-\mu)}{\sqrt{N}}$$
, where $\mu = \frac{|G|}{|U|}$

Recap: Monte Carlo Method

When is this method an FPRAS?

- |U| is known and easy to uniformly sample from U.
- Easy to check whether sample is in G
- |U|/|G| is small ... (polynomial in the size of the input)

Theorem:

$$\forall \ 0 < \varepsilon < 1.5, 0 < \delta < 1, if \ N > \frac{|U|}{|G|} \cdot \frac{3}{\varepsilon^2} \cdot \ln \frac{2}{\delta}$$

then,
$$P[(1-\varepsilon)|G| \le \hat{C} \le (1+\varepsilon)|G|] \ge 1-\delta$$

Recap: Importance Sampling

- In certain case |G| << |U|, hence the number of samples is not small.
- Suppose q(x) is the density of interest, sample from a different approximate density p(x)

$$\int f(x)q(x)dx = \int f(x) \left(\frac{q(x)}{p(x)}\right) p(x)dx$$
$$= E_{p(x)} \left[f(x) \frac{q(x)}{p(x)} \right]$$

Hence,
$$\int f(x)q(x)dx \approx \frac{1}{N} \sum_{i=0}^{N} f(X_i) \frac{q(X_i)}{p(X_i)},$$

where X_i are sampled from p(x)

Today's Class

- Markov Chains
- Markov Chain Monte Carlo sampling
 - a.k.a. Metropolis-Hastings Method.
 - Standard technique for probabilistic inference in machine learning, when the probability distribution is hard to compute exactly

Markov Chains

- Consider a time varying random process which takes the value X_t at time t
 - Values of X_t are drawn from a finite (more generally countable) set of states Ω .
- $\{X_0 ... X_t ... X_n\}$ is a *Markov Chain* if the value of X_t only depends on X_{t-1}

Transition Probabilities

- $Pr[X_{t+1} = s_j | X_t = s_i]$, denoted by P(i,j), is called the transition probability
 - Can be represented as a $|\Omega| \times |\Omega|$ matrix P.
 - P(i,j) is the probability that the chain moves from state i to state j
- Let $\pi_i(t) = Pr[X_t = s_i]$ denote the probability of reaching state i at time t

$$\pi_{j}(t) = \Pr[X_{t} = s_{j}]$$

$$= \sum_{i} \Pr[X_{t} = s_{j} | X_{t-1} = s_{i}] \Pr[X_{t-1} = s_{i}]$$

$$= \sum_{i} P(i, j) \cdot \Pr[X_{t-1} = s_{i}] = \sum_{i} P(i, j) \pi_{i}(t - 1)$$

Lecture 4 : 590.04 Fall 15

Transition Probabilities

- $Pr[X_{t+1} = s_j | X_t = s_i]$, denoted by P(i,j), is called the transition probability
 - Can be represented as a $|\Omega| \times |\Omega|$ matrix P.
 - P(i,j) is the probability that the chain moves from state i to state j
- If $\pi(t)$ denotes the $1x|\Omega|$ vector of probabilities of reaching all the states at time t,

$$\pi(t) = \pi(t-1)P$$

- Suppose Ω = {Rainy, Sunny, Cloudy}
- Tomorrow's weather only depends on today's weather.
 - Markov process

$$Pr[X_{t+1} = Sunny \mid X_t = Rainy] = 0.25$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

Pr[X_{t+1} = Sunny | X_t = Sunny] = 0 No 2 consecutive days of sun (Seattle?)

- Suppose $\Omega = \{Rainy, Sunny, Cloudy\}$
- Tomorrow's weather only depends on today's weather.
 - Markov process

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

- Suppose today is Sunny. $\pi(0) = [0 \ 1 \ 0]$
- What is the weather 2 days from now?

$$\pi(2) = \pi(0)P^2 = [0.375 \quad 0.25 \quad 0.375]$$

- Suppose $\Omega = \{Rainy, Sunny, Cloudy\}$
- Tomorrow's weather only depends on today's weather.
 - Markov process

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

- Suppose today is Sunny. $\pi(0) = [0 \ 1 \ 0]$
- What is the weather 7 days from now?

$$\pi(7) = \pi(0)P^7 = [0.4 \quad 0.2 \quad 0.4]$$

- Suppose Ω = {Rainy, Sunny, Cloudy}
- Tomorrow's weather only depends on today's weather.
 - Markov process

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

- Suppose today is Rainy. $\pi(0) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
- What is the weather 2 days from now? $\pi(2) = \pi(0)P^2 = [0.4375 \quad 0.1875 \quad 0.375]$
- Weather 7 days from now? $\pi(7) = \pi(0)P^7 = [0.4 \ 0.2 \ 0.4]$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.5 & 0 & 0.5 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}$$

$$\pi(0) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$
 $\pi(7) = \pi(0)P^7 = \begin{bmatrix} 0.4 & 0.2 & 0.4 \end{bmatrix}$
 $\pi(0) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\pi(7) = \pi(0)P^7 = \begin{bmatrix} 0.4 & 0.2 & 0.4 \end{bmatrix}$

- After sufficient amount of time the expected weather distribution is independent of the starting value.
- Moreover, $\pi(7) = \pi(8) = \pi(9) = \cdots = \begin{bmatrix} 0.4 & 0.2 & 0.4 \end{bmatrix}$
- This is called the stationary distribution.

Stationary Distribution

• π is called a *stationary distribution* of the Markov Chain if

$$\pi = \pi P$$

• That is, once the stationary distribution is reached, every subsequent X_i is a sample from the distribution π

How to use Markov Chains:

- Suppose you want to sample from a set $|\Omega|$, according to distribution π
- Construct a Markov Chain (P) such that π is the stationary distribution
- Once stationary distribution is achieved, we get samples from the correct distribution.

Conditions for a Stationary Distribution

A Markov chain is **ergodic** if it is:

Irreducible: A state j can be reached from any state i in some finite number of steps.

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0.25 & 0.75 \end{bmatrix}$$

Conditions for a Stationary Distribution

A Markov chain is **ergodic** if it is:

Irreducible: A state j can be reached from any state i in some finite number of steps.

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0.25 & 0.75 \end{bmatrix}$$

• **Aperiodic**: A chain is not forced into cycles of fixed length between certain states Γ 0 0 0 5 0 5 1

$$P = \begin{bmatrix} 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{bmatrix}$$
Duke

Lecture 4 : 590.04 Fall 15

Conditions for a Stationary Distribution

A Markov chain is **ergodic** if it is:

- Irreducible: A state j can be reached from any state i in some finite number of steps.
- Aperiodic: A chain is not forced into cycles of fixed length between certain states

Theorem: For every ergodic Markov chain, there is a unique vector π such that for all initial probability vectors $\pi(0)$,

$$\lim_{t\to\infty} \boldsymbol{\pi}(t) = \lim_{t\to\infty} \boldsymbol{\pi}(0) \boldsymbol{P}^t = \boldsymbol{\pi}$$

Sufficient Condition: Detailed Balance

 In a stationary walk, for any pair of states j, k, the Markov Chain is as likely to move from j to k as from k to j.

$$\pi_j P(j,k) = \pi_k P(k,j)$$

Also called reversibility condition.

Example: Random Walks

Consider a graph G = (V,E), with weights on edges (w(e))

Random Walk:

- Start at some node u in the graph G(V,E)
- Move from node u to node v with probability proportional to w(u,v).

Random walk is a Markov chain

- State space = V
- $P(u,v) = w(u,v) / \Sigma w(u,v')$ if $(u,v) \in E$ = 0 if (u,v) is not in E

Example: Random Walk

Random walk is ergodic if:

Irreducible: A state j can be reached from any state i in some finite number of steps.

If G is connected.

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & 0.25 & 0.75 \end{bmatrix}$$

 Aperiodic: A chain is not forced into cycles of fixed length between certain states

If G is not bipartite

$$P = \begin{bmatrix} 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{bmatrix}$$
Duke

Lecture 4: 590.04 Fall 15

Example: Random Walk

Uniform random walk:

- Suppose all weights on the graph are 1
- P(u,v) = 1/deg(u) (or 0)

Theorem: If G is connected and not bipartite, then the stationary distribution of the random walk is

$$\pi_u = \frac{\deg(u)}{2|E|}$$

Example: Random Walk

Symmetric random walk:

• Suppose P(u,v) = P(v,u)

Theorem: If G is connected and not bipartite, then the stationary distribution of the random walk is

$$\pi_u = \frac{1}{|V|}$$

Stationary Distribution

• π is called a *stationary distribution* of the Markov Chain if

$$\pi = \pi P$$

• That is, once the stationary distribution is reached, every subsequent X_i is a sample from the distribution π

How to use Markov Chains:

- Suppose you want to sample from a set $|\Omega|$, according to distribution π
- Construct a Markov Chain (P) such that π is the stationary distribution
- Once stationary distribution is achieved, we get samples from the correct distribution.

Metropolis-Hastings Algorithm (MCMC)

• Suppose we want to sample from a complex distribution f(x) = p(x) / K, where K is unknown or hard to compute

Example: Bayesian Inference

Metropolis-Hastings Algorithm

- Start with any initial value x_0 , such that $p(x_0) > 0$
- Using current value x_{t-1} , sample a new point according some **proposal distribution** $q(x_t \mid x_{t-1})$

• Compute
$$\alpha(x_t|x_{t-1}) = \min\left(1, \frac{p(x_t)}{p(x_{t-1})} \frac{q(x_{t-1}|x_t)}{q(x_t|x_{t-1})}\right)$$

• With probability α accept the move to x_t , otherwise reject x_t

Why does Metropolis-Hastings work?

Metropolis-Hastings describes a Markov chain with transition probabilities:

$$P(x,y) = q(y|x) \min\left(1, \frac{p(y)}{p(x)} \frac{q(x|y)}{q(y|x)}\right)$$

- We want to show that f(x) = p(x)/K is the stationary distribution
- Recall sufficient condition for stationary distribution:

$$\pi_i P(j,k) = \pi_k P(k,j)$$

Why does Metropolis-Hastings work?

Metropolis-Hastings describes a Markov chain with transition probabilities:

$$P(x,y) = q(y|x) \min\left(1, \frac{p(y)}{p(x)} \frac{q(x|y)}{q(y|x)}\right)$$

• Sufficient to show: p(x)P(x,y) = p(y)P(y,x)

Proof: Case 1

$$P(x,y) = q(y|x) \min\left(1, \frac{p(y)}{p(x)} \frac{q(x|y)}{q(y|x)}\right)$$

- Suppose p(y)q(x|y) = p(x) q(y|x)
- Then, $P(x,y) = q(y \mid x)$
- Therefore $P(x,y)p(x) = q(y \mid x) p(x) = p(y) q(x \mid y) = P(y,x) p(y)$

Proof: Case 2

$$P(x,y) = q(y|x) \min\left(1, \frac{p(y)}{p(x)} \frac{q(x|y)}{q(y|x)}\right)$$

Suppose,
$$p(y)q(x|y) > p(x) q(y|x)$$

Then, $\alpha(y|x) = 1$, $\alpha(x|y) = \frac{p(x)q(y|x)}{p(y)q(x|y)}$
 $P(y,x)p(y) = q(x|y)\alpha(x|y)p(y)$
 $= q(x|y)\frac{p(x)q(y|x)}{p(y)q(x|y)}p(y) = p(x)q(y|x)$
 $= p(x)q(y|x)\alpha(y|x) = p(x)P(x,y)$

Proof of Case 3 is identical.

When is stationary distribution reached?

Next class ...

